This does not belong in CSE332

- This lecture mentions some highlights of NP, the P vs. NP question, and NP-completeness
- It should not be part of CSE332:
 - 30 minutes can’t due this rich and important topic justice
 - It’s a major component (approx. 2 weeks) of CSE312
 - It’s not on the final
- But in Spring 2010, you are all “in the transition”
 - None of you will take CSE312 because you took CSE321
 - So want to mention what you’re missing
 - Encourage you to take CSE421 or CSE431 to learn more
- So, next academic year, this lecture drops out of CSE332

Outline

- A few example problems
 - Checking a solution vs. finding a solution
- P == NP?
- NP-completeness
- Why it’s called NP
- NP is not as hard as it gets
Subset sum

Input: An array of n numbers and a target-sum sum
Output: A subset of the numbers that add up to sum if one exists

$O(2^n)$ algorithm: Try every subset of array
$O(n^k)$ algorithm: Unknown, probably does not exist

Verifying a solution: Given a subset that allegedly adds up to sum, add them up in $O(n)$
Verifying no solution exists: hard in general as far as we know

Vertex Cover: Optimal

Input: A graph (V,E)
Output: A minimum size subset S of V such that for every edge (u,v) in E, at least one of u or v is in S

$O(2^{|V|})$ algorithm: Try every subset of vertices; pick smallest one
$O(|V|^k)$ algorithm: Unknown, probably does not exist

Verifying a solution:
– Hmm, hard to verify an answer is optimal (smallest $|S|$)
– Can recast vertex cover as a decision problem

Vertex Cover: Decision Problem

Input: A graph (V,E) and a number m
Output: A subset S of V such that for every edge (u,v) in E, at least one of u or v is in S and $|S|=m$ (if such an S exists)

$O(2^m)$ algorithm: Try every subset of vertices of size m
$O(m^k)$ algorithm: Unknown, probably does not exist

Verifying a solution: Easy, see if S has size m and covers edges
Good enough: Binary search on m can solve the original problem

Traveling Salesman

[Like vertex cover, usually interested in the optimal solution, but we can ask a yes/no question and rely on binary search for optimal]

Input: A complete directed graph (V,E) and a number m
Output: A path that visits each vertex exactly once and has total cost $< m$ if one exists

$O(2^{|V|})$ algorithm: Try every subset of vertices; pick smallest one
$O(|V|^k)$ algorithm: Unknown, probably does not exist

Verifying a solution: Easy
Satisfiability

\[(\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor \neg x_5) \]

Input: a logic formula of size m containing n variables
Output: An assignment of Boolean values to the variables in the formula such that the formula is true

$O(m^*2^n)$ algorithm: Try every variable assignment
$O(m^k n^k)$ algorithm: Unknown, probably does not exist

Verifying a solution: Evaluate the formula under the assignment

Outline

- A few example problems
 - Checking a solution vs. finding a solution

- $P == NP$?

- NP-completeness

- Why it’s called NP

- NP is not as hard as it gets

More?

- Thousands of different problems that:
 - Have real applications
 - Nobody has polynomial algorithms for

- Widely believed: None of these problems have polynomial algorithms
 - For optimal solutions, but some can be approximated

- But: Nobody has ever proven that a single problem is:
 - In NP: A solution can be verified in polynomial time
 - And not in P: Cannot be solved in polynomial time

P==NP?

- Proving (or disproving) $P \neq NP$ is the most vexing and important open question in computer science and probably mathematics
 - A $1M prize, the Turing Award, and eternal fame await

- Clearly $P \subseteq NP$
 - If there is a polynomial algorithm, then we can just “verify” a solution exists by running the algorithm

- If $P==NP$, then all sorts of strange things / problems arise
 - Most cryptography would stop working, for example
 - But nobody has been able to prove $P \neq NP$
NP-Completeness

What we have been able to prove is that many problems in \(\text{NP} \) are actually \(\text{NP} \)-complete:

Definition: A problem is \(\text{NP-complete} \) if the discovery of a polynomial algorithm for it means every problem in \(\text{NP} \) has a polynomial-time algorithm, i.e., \(\text{P} = \text{NP} \)

All four of our examples are \(\text{NP} \)-complete
- There are thousands more

How do you prove a problem is \(\text{NP-complete} \)?
- Take CSE421

Why it’s called NP

- Your instructor finds the “polynomial time to verify a solution” definition of \(\text{NP} \) intuitive

- An equivalent definition (not obvious it’s equivalent) is “there exists a polynomial time algorithm if the algorithm is allowed to make correct guesses at every step”
 - This “guessing” is technically non-determinism in the sense you will learn (or have learned) about in CSE322
 - \(\text{NP} \) stands for non-deterministic polynomial time

Hard problems

There are problems in each of these categories:
- We know how to solve efficiently: most of this course
- We do not know how to solve efficiently:
 - For example, NP-complete problems
- We know we cannot solve efficiently: see CSE431
- We know we cannot solve at all: see CSE311/CSE322
 - Canonical example: The halting problem

A key art in computer science:
When handed a problem, figure out which category it is in!
Example: Don’t waste time on an algorithm for an intractable problem!