The prefix-sum problem

Given int[] input, produce int[] output where output[i] is the sum of input[0]+input[1]+...input[i]

Sequential is easy enough for a CSE142 exam:

```java
int[] prefix_sum(int[] input){
    int[] output = new int[input.length];
    output[0] = input[0];
    for(int i=1; i < input.length; i++)
        output[i] = output[i-1]+input[i];
    return output;
}
```

This does not appear to be parallelizable
- Work: O(n), Span: O(n)
- This algorithm is sequential, but we can design a different algorithm with parallelism (surprising)

Parallel prefix-sum

The parallel-prefix algorithm has O(n) work but a span of $2\log n$
- So span is $O(\log n)$ and parallelism is $n/\log n$, an exponential speedup just like array summing

- The 2 is because there will be two "passes" one "up" one "down"
- Historical note / local bragging:
 - Original algorithm due to R. Ladner and M. Fischer in 1977
 - Richard Ladner joined the UW faculty in 1971 and hasn’t left
The algorithm, part 1

1. Up: Build a binary tree where
 - Root has sum of \(\text{input}[0]..\text{input}[n-1]\)
 - If a node has sum of \(\text{input}[\text{lo}]..\text{input}[\text{hi}]\) and \(\text{hi}>\text{lo}\),
 - Left child has sum of \(\text{input}[\text{lo}]..\text{input}[\text{middle}]\)
 - Right child has sum of \(\text{input}[\text{middle}]..\text{input}[\text{hi}]\)
 - A leaf has sum of \(\text{input}[\text{i}]..\text{input}[\text{i}]\), i.e., \(\text{input}[\text{i}]\)

 This is an easy fork-join computation: combine results by actually building a binary tree with all the sums of ranges
 - Tree built bottom-up in parallel
 - Could be more clever with an array like with heaps

 Analysis: \(O(n)\) work, \(O(\log n)\) span

The algorithm, part 2

2. Down: Pass down a value \textit{fromLeft}
 - Root given a \textit{fromLeft} of 0
 - Node takes its \textit{fromLeft} value and
 - Passes its left child the same \textit{fromLeft}
 - Passes its right child its \textit{fromLeft} plus its left child’s sum (as stored in part 1)
 - At the leaf for array position \(\text{i}\),
 \(\text{output}[\text{i}]=\text{fromLeft}+\text{input}[\text{i}]\)

 This is an easy fork-join computation: traverse the tree built in step 1 and produce no result (leafs assign to \textit{output})
 - Invariant: \textit{fromLeft} is sum of elements left of the node’s range

 Analysis: \(O(n)\) work, \(O(\log n)\) span
Sequential cut-off

Adding a sequential cut-off is easy as always:

- **Up:**
 - just a sum, have leaf node hold the sum of a range

- **Down:**

  ```
  output[lo] = fromLeft + input[lo];
  for(i=lo+1; i < hi; i++)
    output[i] = output[i-1] + input[i]
  ```

Parallel prefix, generalized

Just as sum-array was the simplest example of a pattern that matches many, many problems, so is prefix-sum

- Minimum, maximum of all elements to the left of \(i \)
- Is there an element to the left of \(i \) satisfying some property?
- Count of all elements to the left of \(i \) satisfying some property
 - This last one is perfect for an efficient parallel filter...
 - Perfect for building on top of the “parallel prefix trick”
- We did an inclusive sum, but exclusive is just as easy

Filter

[Non-standard terminology]

Given an array \(\text{input} \), produce an array \(\text{output} \) containing only elements such that \(f(\text{elt}) \) is true

Example: \(\text{input} \; [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] \)

\(f: \; \text{is elt > 10} \)

\(\text{output} \; [17, 11, 13, 19, 24] \)

Looks hard to parallelize

- Finding elements for the output is easy
- But getting them in the right place is hard

Parallel prefix to the rescue

1. Use a parallel map to compute a bit-vector for true elements

\(\text{input} \; [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] \)

\(\text{bits} \; [1, 0, 0, 0, 1, 0, 1, 1, 0, 1] \)

2. Do parallel-prefix sum on the bit-vector

\(\text{bitsum} \; [1, 1, 1, 2, 2, 3, 4, 4, 5] \)

3. Use a parallel map to produce the output

\(\text{output} \; [17, 11, 13, 19, 24] \)

```java
output = new array of size bitsum[n-1]
if(bitsum[0]==1) output[0] = input[0];
FORALL(i=1; i < input.length; i++)
  if(bitsum[i] > bitsum[i-1])
    output[bitsum[i]-1] = input[i];
```
Filter comments

• First two steps can be combined into one pass
 – Just using a different base case for the prefix sum
 – Has no effect on asymptotic complexity

• Parallelized filters will help us parallelize quicksort

• Analysis: $O(n)$ work, $O(\log n)$ span
 – 2 or 3 passes, but 3 is a constant

Quicksort

Recall quicksort was sequential, in-place, expected time $O(n \log n)$

Best / expected case work

1. Pick a pivot element $O(1)$
2. Partition all the data into:
 A. The elements less than the pivot $O(n)$
 B. The pivot
 C. The elements greater than the pivot
3. Recursively sort A and C $2T(n/2)$

How should we parallelize this?

Doing better

• An $O(\log n)$ speed-up with an infinite number of processors is okay, but a bit underwhelming
 – Sort 10^9 elements 30 times faster

• Google searches strongly suggest quicksort cannot do better because the partition cannot be parallelized
 – The Internet has been known to be wrong 😊
 – But we need auxiliary storage (no longer in place)
 – In practice, constant factors may make it not worth it, but remember Amdahl’s Law

• Already have everything we need to parallelize the partition…
Parallel partition (not in place)

Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

- This is just two filters!
 - We know a filter is $O(n)$ work, $O(\log n)$ span
 - Filter elements less than pivot into left side of aux array
 - Filter elements greater than pivot into right size of aux array
 - Put pivot in-between them and recursively sort
 - With a little more cleverness, can do both filters at once but no effect on asymptotic complexity

- With $O(\log n)$ span for partition, the total span for quicksort is $O(\log n) + 1T(n/2) = O(\log^2 n)$

Example

- Step 1: pick pivot as median of three

```
8 1 4 9 0 3 5 2 7 6
```

- Steps 2a and 2a (combinable): filter less than, then filter greater than into a second array
 - Fancy parallel prefix to pull this off not shown

```
1 4 0 3 5 2 6 8 9 7
```

- Step 3: Two recursive sorts in parallel
 - Can sort back into original array (like in mergesort)

Now mergesort

Recall mergesort: sequential, not-in-place, worst-case $O(n \log n)$

1. Sort left half and right half
 - Best / expected case work
 - $2T(n/2)$
 - $O(n)$

 Just like quicksort, doing the two recursive sorts in parallel changes the recurrence for the span to $O(n) + 1T(n/2) = O(n)$
 - Again, parallelism is $O(\log n)$
 - To do better we need to parallelize the merge
 - The trick won’t use parallel prefix this time

Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

```
0 1 4 8 9
2 3 5 6 7
```

Idea: Suppose the larger subarray has n elements. In parallel,
- merge the first $n/2$ elements of the larger half with the "appropriate" elements of the smaller half
- merge the second $n/2$ elements of the larger half with the rest of the smaller half
1. Get median of bigger half: \(O(1) \) to compute middle index

2. Find how to split the smaller half at the same value as the left-half split: \(O(\log n) \) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: \(O(1) \)
Parallelizing the merge

1. Get median of bigger half: O(1) to compute middle index
2. Find how to split the smaller half at the same value as the left-half split: O(\log n) to do binary search on the sorted small half
3. Size of two sub-merges conceptually splits output array: O(1)
4. Do two submerges in parallel

The Recursion

When we do each merge in parallel, we split the bigger one in half and use binary search to split the smaller one

Analysis

• Sequential recurrence for mergesort:
 \[T(n) = 2T(n/2) + O(n) \] which is \(O(n \log n) \)

• Doing the two recursive calls in parallel but a sequential merge:
 work: same as sequential \quad span: T(n)=1T(n/2)+O(n) which is \(O(n) \)

• Parallel merge makes work and span harder to compute
 – Each merge step does an extra \(O(\log n) \) binary search to find how to split the smaller subarray
 – To merge \(n \) elements total, do two smaller merges of possibly different sizes
 – But the worst-case split is \((1/4)n \) and \((3/4)n \)
 – When subarrays same size and “smaller” splits “all” / “none”

Analysis continued

For just a parallel merge of \(n \) elements:
• Span is \(T(n) = T(3n/4) + O(\log n) \), which is \(O(\log^2 n) \)
• Work is \(T(n) = T(3n/4) + T(n/4) + O(1) \) which is \(O(n) \)
 (neither of the bounds are immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:
• Span is \(T(n) = 1T(n/2) + O(\log^2 n) \), which is \(O(1) \log^3 n \)
• Work is \(T(n) = 2T(n/2) + O(n) \), which is \(O(n \log n) \)

So parallelism (work / span) is \(O(n / \log^2 n) \)
 – Not quite as good as quicksort, but worst-case guarantee
 – And as always this is just the asymptotic result