CSE332: Data Abstractions

Lecture 20: Parallel Prefix and Parallel Sorting

Dan Grossman
Spring 2010

What next?

Done:

Simple ways to use parallelism for counting, summing, finding
Even though in practice getting speed-up may not be simple
Analysis of running time and implications of Amdahl’s Law

Now:

Clever ways to parallelize more than is intuitively possible
Parallel prefix:
 This “key trick” typically underlies surprising parallelization
< Enables other things like filters
Parallel sorting: quicksort (not in place) and mergesort
e Easy to get a little parallelism
» With cleverness can get a lot

Spring 2010 CSE332: Data Abstractions 2

The prefix-sum problem

Given Int[] input, produce int[] output where output[i]
is the sum of input[O]+input[1]+..input[i]

Sequential is easy enough for a CSE142 exam:

int[] prefix_sum(int[] input){
int[] output = new int[input.length];
output[0] = input[0];
for(int i1=1; i < input.length; i++)
output[i] = output[i-1]+input[i];
return output;

}

This does not appear to be parallelizable
— Work: O(n), Span: O(n)
— This algorithm is sequential, but we can design a different
algorithm with parallelism (surprising)
Spring 2010 CSE332: Data Abstractions 3

Parallel prefix-sum

The parallel-prefix algorithm has O(n) work but a span of 2log n

— So span is O(log n) and parallelism is n/log n, an
exponential speedup just like array summing

e The 2 is because there will be two “passes” one “up” one “down

» Historical note / local bragging:
— Original algorithm due to R. Ladner and M. Fischer in 1977
— Richard Ladner joined the UW faculty in 1971 and hasn't left

-

h . al ‘.
1968? 19737 recent
Spring 2010 CSE332: Data Abstractions 4

o
'

range 0,8

range 0,8
Example sum 76 Example sum 76
/fromleft \ /fromleft 0 \
range 04 range 4,8 range 04 range 4,8
sum 36 sum 40 sum 36 sum 40
fromleft fromleft fromleft O fromleft 36
range 0,2 range 24 range 4,6 range 6,8 range 0,2 range 24 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft fromleft O fromleft 10 fromleft 36 fromleft 66
r 0,1 |r 1,2 {r 23 |/r 34 |r 45 ||r 56 ||r 6,7 ||[r 7.8 r 0,1 |r 1,2 {r 23 |/r 34 |r 45 ||r 56 ||r 6,7 ||[r 7.8
S 6 s 4 S 16 |[|S 10 ||s 16 ||s 14 ||s 2 8 S 6 s 4 S 16 [|S 10 ||s 16 ||s 14 ||s 2 s 8
f f f f f f f f f O f 6 f 10 [|[f 26 ||[f 36 ||f 52 ||f 66 ||f 68
input [6 4 | 16 | 10 | 16 | 14 | 2 8 input | 6 4 | 16 | 10 | 16 | 14 | 2 | 8
output | | | | output | 6 | 10 | 26 | 36 | 52 | 66 | 68 | 76 |
Spring 2010 CSE332: Data Abstractions 5 Spring 2010 CSE332: Data Abstractions 6

The algorithm, part 1

1. Up: Build a binary tree where

Root has sum of input[0]- - input[n-1]

If a node has sum of input[l1o]. . input[hi] and hi>lo,
Left child has sum of input[l10]. . input[middle]
Right child has sum of input[middle]. . input[hi]

A leaf has sum of input[i].-.input[i],ie., input[i]

This is an easy fork-join computation: combine results by actually
building a binary tree with all the sums of ranges

Tree built bottom-up in parallel
Could be more clever with an array like with heaps

Analysis: O(n) work, O(log n) span

Spring 2010 CSE332: Data Abstractions

The algorithm, part 2

2. Down: Pass down a value fromLeft

Root given a fromLeft of O

Node takes its fromLeft value and

Passes its left child the same fromLeft

Passes its right child its fFromLeft plus its left child’s sum

(as stored in part 1)

— At the leaf for array position 1,
output[i]=FromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1
and produce no result (leafs assign to output)
Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(log n) span

Spring 2010 CSE332: Data Abstractions

Sequential cut-off

Adding a sequential cut-off is easy as always:

 Up:
just a sum, have leaf node hold the sum of a range

* Down:
output[lo] = fromLeft + input[lo];
for(i=lo+1l; i < hi; i++)
output[i] = output[i-1] + input[i]

Spring 2010 CSE332: Data Abstractions

Parallel prefix, generalized

Just as sum-array was the simplest example of a pattern that
matches many, many problems, so is prefix-sum

¢ Minimum, maximum of all elements to the left of i

¢ Isthere an element to the left of i satisfying some property?

e Count of all elements to the left of 1 satisfying some property
— This last one is perfect for an efficient parallel filter...

— Perfect for building on top of the “parallel prefix trick”

¢ We did an inclusive sum, but exclusive is just as easy

Spring 2010 CSE332: Data Abstractions

10

Filter

[Non-standard terminology]

Given an array input, produce an array output containing only
elements such that f(elt) is true

Example: input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: is elt > 10
output [17, 11, 13, 19, 24]

Looks hard to parallelize
— Finding elements for the output is easy

— But getting them in the right place is hard

Spring 2010 CSE332: Data Abstractions

11

Parallel prefix to the rescue

1. Use a parallel map to compute a bit-vector for true elements
input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1,0, 1, 1,0, 1]

2. Do parallel-prefix sum on the bit-vector
bitsum [1, 1, 1,1, 2,2, 3, 4, 4, 5]

3. Use a parallel map to produce the output
output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1]
if(bitsum[0]==1) output[0] = input[0];
FORALL(i=1; i < input.length; i++)
if(bitsum[i] > bitsum[i-1])
output[bitsum[i]-1] = input[i];

Spring 2010 CSE332: Data Abstractions

12

Filter comments

» First two steps can be combined into one pass
— Just using a different base case for the prefix sum
— Has no effect on asymptotic complexity

« Parallelized filters will help us parallelize quicksort

* Analysis: O(n) work, O(log n) span
— 2 or 3 passes, but 3 is a constant

Quicksort review

Recall quicksort was sequential, in-place, expected time O(n 1og n)

Best / expected case work

1. Pick a pivot element o)

2. Partition all the data into: o(n)
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort Aand C 2T(n/2)

How should we parallelize this?

Spring 2010 CSE332: Data Abstractions 13 Spring 2010 CSE332: Data Abstractions 14
Quicksort Doing better
. . Best / expected case work * An O(log n) speed-up with an infinite number of processors is
L. Pick a pivot element o) okay, but a bit underwhelmin
2. Partition all the data into: o(n) v o8 ning
A. The elements less than the pivot — Sort 10° elements 30 times faster
B. The pivot
C. The elements greater than the pivot « Google searches strongly suggest quicksort cannot do better
3. Recursively sort Aand C 2T(n/2) because the partition cannot be parallelized

Easy: Do the two recursive calls in parallel
» Work: unchanged of course O(n log n)
* Span: Now O(n) + 1T(n/2) = O(n)
* So parallelism (i.e., work/span) is O(log n)

Spring 2010 CSE332: Data Abstractions 15

— The Internet has been known to be wrong ©
— But we need auxiliary storage (no longer in place)

— In practice, constant factors may make it not worth it, but
remember Amdahl’'s Law

¢ Already have everything we need to parallelize the partition...

Spring 2010 CSE332: Data Abstractions 16

Parallel partition (not in place)

Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

e This is just two filters!

We know a filter is O(n) work, O(log n) span

— Filter elements less than pivot into left side of aux array
Filter elements great than pivot into right size of aux array
Put pivot in-between them and recursively sort

With a little more cleverness, can do both filters at once but
no effect on asymptotic complexity

« With O(log n) span for partition, the total span for quicksort is
O(log n) + 1T(n/2) = O(log? n)

Spring 2010 CSE332: Data Abstractions 17

Example

« Step 1: pick pivot as median of three

[8]1]4]ef0]3]5[2]7]6]

« Steps 2a and 2a (combinable): filter less than, then filter greater
than into a second array

— Fancy parallel prefix to pull this off not shown

[2]4]ofs[s]2] [| |

11‘4‘0‘3‘5‘2\6‘8‘9‘7

e Step 3: Two recursive sorts in parallel
— Can sort back into original array (like in mergesort)

Spring 2010 CSE332: Data Abstractions 18

Now mergesort

Recall mergesort: sequential, not-in-place, worst-case O(n 1og n)

Best / expected case work
1. Sort left half and right half 2T(n/2)
2. Merge results o(n)

Just like quicksort, doing the two recursive sorts in parallel changes
the recurrence for the span to O(n) + 1T(n/2) = O(n)

» Again, parallelism is O(log n)
» To do better we need to parallelize the merge
— The trick won't use parallel prefix this time

Spring 2010 CSE332: Data Abstractions 19

Parallelizing the merge

Need to merge two sorted subarrays (may not have the same size)

Idea: Suppose the larger subarray has n elements. In parallel,

* merge the first n/2 elements of the larger half with the
“appropriate” elements of the smaller half

* merge the second n/2 elements of the larger half with the
rest of the smaller half

Spring 2010 CSE332: Data Abstractions 20

Parallelizing the merge

Spring 2010 CSE332: Data Abstractions 21

Parallelizing the merge

(of4[efefe] [1]2]3[5]7

1. Get median of bigger half: O(1) to compute middle index

Spring 2010 CSE332: Data Abstractions 22

Parallelizing the merge

[o[+[e[8]s] [1]2]3[s]7]

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half

Spring 2010 CSE332: Data Abstractions 23

Parallelizing the merge

[of+[efe]s] [1]2]3[s]7]

1. Get median of bigger half: O(1) to compute middle index

Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)

Spring 2010 CSE332: Data Abstractions 24

Parallelizing the merge

(o[]e]8]e]

(o[[2]3]4]5 [SIIElE)
lo hi

1. Get median of bigger half: O(1) to compute middle index

2. Find how to split the smaller half at the same value as the left-
half split: O(log n) to do binary search on the sorted small half

3. Size of two sub-merges conceptually splits output array: O(1)
4. Do two submerges in parallel

Spring 2010 CSE332: Data Abstractions 25

The Recursion

o[+ [e]8]e]
[0]4]

When we do each merge in parallel, we split the bigger one in half
and use binary search to split the smaller one

Spring 2010 CSE332: Data Abstractions 26

Analysis

Sequential recurrence for mergesort:
T(n) = 2T(n/2) + O(n) which is O(nlogn)

Doing the two recursive calls in parallel but a sequential merge:
work: same as sequential span: T(n)=1T(n/2)+0O(n) which is O(n)

Parallel merge makes work and span harder to compute

— Each merge step does an extra O(log n) binary search to find
how to split the smaller subarray

— To merge n elements total , do two smaller merges of possibly
different sizes

— But the worst-case split is (1/4)n and (3/4)n

* When subarrays same size and “smaller” splits “all” / “none”

Spring 2010 CSE332: Data Abstractions 27

Analysis continued

For just a parallel merge of n elements:

* Spanis T(n) = T(3n/4) + O(log n), which is O(log? n)

e Work is T(n) = T(3n/4) + T(n/4) + O(log n) which is O(n)

¢ (neither of the bounds are immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:
e Spanis T(n) = 1T(n/2) + O(log? n), which is O(log?® n)
* Work is T(n) = 2T(n/2) + O(n), which is O(n log n)

So parallelism (work / span) is O(n / 1og?2 n)
— Not quite as good as quicksort, but worst-case guarantee

— And as always this is just the asymptotic result

Spring 2010 CSE332: Data Abstractions 28

