Where are we

Done:
• How to use fork, and join to write a parallel algorithm
• Why using divide-and-conquer with lots of small tasks is best
 – Combines results in parallel
• Some Java and ForkJoin Framework specifics
 – More pragmatics in section and posted notes

Now:
• More examples of simple parallel programs
• Arrays & balanced trees support parallelism, linked lists don’t
• Asymptotic analysis for fork-join parallelism
• Amdahl’s Law

What else looks like this?
• Saw summing an array went from $O(n)$ sequential to $O(\log n)$ parallel (assuming a lot of processors and very large n!)
 – An exponential speed-up in theory

• Anything that can use results from two halves and merge them in $O(1)$ time has the same property…

Examples
• Maximum or minimum element
• Is there an element satisfying some property (e.g., is there a 17)?
• Left-most element satisfying some property (e.g., first 17)
 – What should the recursive tasks return?
 – How should we merge the results?
• In project 3: corners of a rectangle containing all points
• Counts, for example, number of strings that start with a vowel
 – This is just summing with a different base case
 – Many problems are!
Reducions

- Computations of this form are called reductions (or reduces?)
- They take a set of data items and produce a single result
- Note: Recursive results don’t have to be single numbers or strings. They can be arrays or objects with multiple fields.
 - Example: Histogram of test results
 - Example on project 3: Kind of like a 2-D histogram
- While many can be parallelized due to nice properties like associativity of addition, some things are inherently sequential
 - How we process arr[i] may depend entirely on the result of processing arr[i-1]

Even easier: Data Parallel (Maps)

- While reductions are a simple pattern of parallel programming, maps are even simpler
 - Operate on set of elements to produce a new set of elements (no combining results)
 - For arrays, this is so trivial some hardware has direct support
- Canonical example: Vector addition

```java
int[] vector_add(int[] arr1, int[] arr2) {
    assert (arr1.length == arr2.length);
    result = new int[arr1.length];
    len = arr.length;
    FORALL(i=0; i < arr.length; i++) {
        result[i] = arr1[i] + arr2[i];
    }
    return result;
}
```

Maps in ForkJoin Framework

```java
class VecAdd extends RecursiveAction {
    int lo; int hi; int[] res; int[] arr1; int[] arr2;
    VecAdd(int l, int h, int[] r, int[] a1, int[] a2) { ... }
    protected void compute() {
        if (hi - lo < SEQUENTIAL_CUTOFF) {
            for (int i=lo; i < hi; i++)
                res[i] = arr1[i] + arr2[i];
        } else {
            int mid = (hi+lo)/2;
            VecAdd left = new VecAdd(lo, mid, res, arr1, arr2);
            VecAdd right = new VecAdd(mid, hi, res, arr1, arr2);
            left.fork();
            right.compute();
        }
    }
    static final ForkJoinPool fjPool = new ForkJoinPool();
    int[] add(int[] arr1, int[] arr2) {
        assert (arr1.length == arr2.length);
        int[] ans = new int[arr1.length];
        fjPool.invoke(new VecAdd(0, arr.length, ans, arr1, arr2);
        return ans;
    }
}
```

Digression on maps and reduces

- You may have heard of Google’s “map/reduce”
 - Or the open-source version Hadoop
- Idea: Perform maps and reduces on data using many machines
 - The system takes care of distributing the data and managing fault tolerance
 - You just write code to map one element and reduce elements to a combined result
- Separates how to do recursive divide-and-conquer from what computation to perform
 - Old idea in higher-order programming (see 341) transferred to large-scale distributed computing
 - Complementary approach to declarative queries (see 344)
Trees

- Our basic patterns so far – maps and reduces – work just fine on balanced trees
 - Divide-and-conquer each child rather than array subranges
 - Correct for unbalanced trees, but won’t get much speed-up
- Example: minimum element in an unsorted but balanced binary tree in \(O(\log n) \) time given enough processors
- How to do the sequential cut-off?
 - Store number-of-descendants at each node (easy to maintain)
 - Or I guess you could approximate it with, e.g., AVL height

Linked lists

- Can you parallelize maps or reduces over linked lists?
 - Example: Increment all elements of a linked list
 - Example: Sum all elements of a linked list

Analyzing algorithms

- Parallel algorithms still need to be:
 - Correct
 - Efficient
- For our algorithms so far, correctness is “obvious” so we’ll focus on efficiency
 - Still want asymptotic bounds
 - Want to analyze the algorithm without regard to a specific number of processors
 - The key “magic” of the ForkJoin Framework is getting expected run-time performance asymptotically optimal for the available number of processors
 - Lets us just analyze our algorithms given this “guarantee”

Work and Span

Let \(T_p \) be the running time if there are \(P \) processors available

Two key measures of run-time for a fork-join computation

- **Work**: How long it would take 1 processor = \(T_1 \)
 - Just “sequentialize” all the recursive forking
- **Span**: How long it would take infinity processors = \(T_\infty \)
 - The longest dependence-chain
 - Example: \(O(\log n) \) for summing an array since > \(n/2 \) processors is no additional help
 - Also called “critical path length” or “computational depth”
The DAG

- A program execution using fork and join can be seen as a DAG
 - I told you graphs were useful! 😊
- Nodes: Pieces of work
- Edges: Source must finish before destination starts
 - A fork "ends a node" and makes two outgoing edges
 - New thread
 - Continuation of current thread
 - A join "ends a node" and makes a node with two incoming edges
 - Node just ended
 - Last node of thread joined on

More interesting DAGs?

- The DAGs are not always this simple
- Example:
 - Suppose combining two results might be expensive enough that we want to parallelize each one
 - Then each node in the inverted tree on the previous slide would itself expand into another set of nodes for that parallel computation

Connecting to performance

- Recall: $T_p = \text{running time if there are } P \text{ processors available}$
- Work = $T_1 = \text{sum of run-time of all nodes in the DAG}$
 - That lonely processor has to do all the work
 - Any topological sort is a legal execution
- Span = $T_\infty = \text{sum of run-time of all nodes on the most-expensive path in the DAG}$
 - Note: costs are on the nodes not the edges
 - Our infinite army can do everything that is ready to be done, but still has to wait for earlier results
Definitions

A couple more terms:

• **Speed-up** on \(P \) processors: \(T_1 / T_P \)

• If speed-up is \(P \) as we vary \(P \), we call it **perfect linear speed-up**
 – Perfect linear speed-up means doubling \(P \) halves running time
 – Usually our goal; hard to get in practice

• **Parallelism** is the maximum possible speed-up: \(T_1 / T_\infty \)
 – At some point, adding processors won’t help
 – What that point is depends on the span

Division of responsibility

• Our job as ForkJoin Framework users:
 – Pick a good algorithm
 – Write a program. When run it creates a DAG of things to do
 – Make all the nodes a small-ish and approximately equal amount of work

• The framework-writer’s job (won’t study how to do it):
 – Assign work to available processors to avoid idling
 – Keep constant factors low
 – Give an **expected-time guarantee** (like quicksort) assuming framework-user did his/her job

\[
T_P \leq (T_1 / P) + O(T_\infty)
\]

What that means (mostly good news)

The fork-join framework guarantee

\[
T_P \leq (T_1 / P) + O(T_\infty)
\]

– No implementation of your algorithm can beat \(O(T_\infty) \) by more than a constant factor

– No implementation of your algorithm on \(P \) processors can beat \((T_1 / P) \) (ignoring memory-hierarchy issues)

– So the framework on average gets within a constant factor of the best you can do, assuming the user did his/her job

So: You can focus on your algorithm, data structures, and cut-offs rather than number of processors and scheduling

• Analyze running time given \(T_1, T_\infty \) and \(P \)

Examples

\[
T_P \leq (T_1 / P) + O(T_\infty)
\]

• In the algorithms seen so far (e.g., sum an array):
 – \(T_1 = O(n) \)
 – \(T_\infty = O(\log n) \)
 – So expect (ignoring overheads): \(T_P \leq O(n/P + \log n) \)

• Suppose instead:
 – \(T_1 = O(n^2) \)
 – \(T_\infty = O(n) \)
 – So expect (ignoring overheads): \(T_P \leq O(n^2/P + n) \)
Amdahl’s Law (mostly bad news)

- So far: talked about a parallel program in terms of work and span
- In practice, it's common that there are parts of your program that parallelize well…
 - Such as maps/reduces over arrays and trees
 …and parts that don’t parallelize at all
 - Such as reading a linked list, getting input, or just doing computations where each needs the previous step
 - “Nine women can’t make a baby in one month”

Why such bad news

\[\frac{T_1}{T_p} = \frac{1}{S + (1-S)/P} \]

\[\frac{T_1}{T_\infty} = \frac{1}{S} \]

- Suppose 33% of a program is sequential
 - Then a billion processors won’t give a speedup over 3
- Suppose you miss the good old days (1980-2005) where 12ish years was long enough to get 100x speedup
 - Now suppose in 12 years, clock speed is the same but you get 256 processors instead of 1
 - For 256 processors to get at least 100x speedup, we need
 \[100 \leq \frac{1}{S + (1-S)/256} \]
 Which means \(S \leq 0.0061 \) (i.e., 99.4% perfectly parallelizable)

Plots you gotta see

1. Assume 256 processors
 - x-axis: sequential portion \(S \), ranging from .01 to .25
 - y-axis: speedup \(T_1 / T_p \) (will go down as \(S \) increases)

2. Assume \(S = .01 \) or .1 or .25 (three separate lines)
 - x-axis: number of processors \(P \), ranging from 2 to 32
 - y-axis: speedup \(T_1 / T_p \) (will go up as \(P \) increases)

Too important for me just to show you: Homework problem!

- Chance to use a spreadsheet or other graphing program
- Compare against your intuition
 - A picture is worth 1000 words, especially if you made it
All is not lost

Amdahl’s Law is a bummer!
 – But it doesn’t mean additional processors are worthless

• We can find new parallel algorithms
 – Some things that seem clearly sequential turn out to be parallelizable

• We can change the problem we’re solving or do new things
 – Example: Video games use tons of parallel processors
 • They are not rendering 10-year-old graphics faster
 • They are rendering more beautiful monsters

Moore and Amdahl

• Moore’s “Law” is an observation about the progress of the semiconductor industry
 – Transistor density doubles roughly every 18 months

• Amdahl’s Law is a mathematical theorem
 – Implies diminishing returns of adding more processors

• Both are incredibly important in designing computer systems