Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept
- A graph is a pair
 \(G = (V, E) \)
 - A set of vertices, also known as nodes
 \(V = \{v_1, v_2, \ldots, v_n\} \)
 - A set of edges
 \(E = \{e_1, e_2, \ldots, e_m\} \)
 - Each edge \(e_i \) is a pair of vertices \((v_j, v_k) \)
 - An edge “connects” the vertices
- Graphs can be directed or undirected

An ADT?

- Can think of graphs as an ADT with operations like \(\text{isEdge}((v_j, v_k)) \)
- But what the “standard operations” are is unclear
- Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms
- Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm
- To make the formulation easy and standard, we have a lot of standard terminology about graphs

Some graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …

Wow: Using the same algorithms for problems for this very different data sounds like “core computer science and engineering”
Undirected Graphs

- In undirected graphs, edges have no specific direction
 - Edges are always “two-way”

- Thus, \((u,v) \in E\) implies \((v,u) \in E\).
 - Only one of these edges needs to be in the set; the other is implicit

- Degree of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices

Directed graphs

- In directed graphs (sometimes called digraphs), edges have a specific direction

- Thus, \((u,v) \in E\) does not imply \((v,u) \in E\).
 - Let \((u,v) \in E\) mean \(u \rightarrow v\) and call \(u\) the source and \(v\) the destination

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination

- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source

Self-edges, connectedness, etc.

[Before you get the wrong idea, graphs are very flexible…]

- A self-edge a.k.a. a loop is an edge of the form \((u,u)\)
 - Depending on the use/algorithm, a graph may have:
 - No self edges
 - Some self edges
 - All self edges (in which case often implicit, but we will be explicit)

- A node can have a degree / in-degree / out-degree of zero

- A graph does not have to be connected
 - Even if every node has non-zero degree

More notation

For a graph \(G = (V, E)\):

- \(|V|\) is the number of vertices
- \(|E|\) is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

- If \((u,v) \in E\)
 - Then \(v\) is a neighbor of \(u\), i.e., \(v\) is adjacent to \(u\)
 - Order matters for directed edges
More notation

For a graph \(G = (V, E) \):

- \(|V|\) is the number of vertices
- \(|E|\) is the number of edges
 - Minimum? 0
 - Maximum for undirected? \(|V| |V+1| / 2 \in O(|V|^2) \)
 - Maximum for directed? \(|V|^2 \in O(|V|^2) \)
 (assuming self-edges allowed, else subtract \(|V|\))

- If \((u, v) \in E\)
 - Then \(v\) is a neighbor of \(u\),
 i.e., \(v\) is adjacent to \(u\)
 - Order matters for directed edges

Examples again

Which would use directed edges? Which would have self-edges? Which would be connected? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Weighted graphs

In a weighed graph, each edge has a weight a.k.a. cost
- Typically numeric (most examples will use ints)
- Orthogonal to whether graph is directed
- Some graphs allow negative weights; many don’t

Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, ..., v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say "a path from \(v_0\) to \(v_n\)."

- A **cycle** is a path that begins and ends at the same node \((v_0 = v_n)\)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Simple paths and cycles

- A **simple path** repeats no vertices, except the first might be the last
 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

- Recall, a **cycle** is a path that ends where it begins
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

- A **simple cycle** is a cycle and a simple path
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Paths/cycles in directed graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Path Length and Cost

- **Path length**: Number of edges in a path
- **Path cost**: Sum of the weights of each edge

Example where

\(P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]\)

Path Length (P)

\[\text{length}(P) = 5\]

Path Cost (P)

\[\text{cost}(P) = 11.5\]
Paths/cycles in directed graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

Undirected graph connectivity

- An undirected graph is **connected** if for all pairs of vertices \(u, v \), there exists a path from \(u \) to \(v \)

Connected graph

Disconnected graph

- An undirected graph is **complete**, a.k.a. fully connected if for all pairs of vertices \(u, v \), there exists an edge from \(u \) to \(v \)

Directed graph connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*

- A **complete** a.k.a. fully connected directed graph has an edge from every vertex to every other vertex

Examples

For undirected graphs: connected? For directed graphs: strongly connected? weakly connected?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...
Trees as graphs

When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...

Rooted Trees

- We are more accustomed to rooted trees where:
 - We identify a unique ("special") root
 - We think of edges are directed: parent to children

- Given a tree, once you pick a root, you have a unique rooted tree (just drawn differently and with undirected edges)

Directed acyclic graphs (DAGs)

- A DAG is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

- Every DAG is a directed graph
 - But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- "Input data" for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …

Density / sparsity

- Recall: In an undirected graph, \(0 \leq |E| < |V|^2 \)
- Recall: In a directed graph: \(0 \leq |E| \leq |V|^2 \)
- So for any graph, \(O(|E|+|V|^2) = O(|V|^2) \)
- One more fact: If an undirected graph is connected, then \(|V| - 1 \leq |E|\)
- Because \(|E|\) is often much smaller than its maximum size, we do not always approximate as \(|E| = O(|V|^2)\)
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., \(|E| = \Theta(|V|^2)\), we say the graph is dense
 - More sloppily, dense means "lots of edges"
 - If \(|E| = O(|V|)\), we say the graph is sparse
 - More sloppily, sparse means "most possible edges missing"

What’s the data structure

- Okay, so graphs are really useful for lots of data and questions we might ask like "what's the lowest-cost path from x to y"
- But we need a data structure that represents graphs
- The “best one” can depend on:
 - properties of the graph (e.g., dense versus sparse)
 - the common queries (e.g., is \((u, v)\) an edge versus what are the neighbors of node \(u\))
- So we’ll discuss the two standard graph representations…
 - Different trade-offs, particularly time versus space

Adjacency matrix

- Assign each node a number from 0 to \(|V| - 1\)
- A \(|V| \times |V|\) matrix (i.e., 2-D array) of booleans (or 1 vs. 0)
 - If \(M\) is the matrix, then \(M[u][v] == \text{true}\) means there is an edge from \(u\) to \(v\)

```
A | B | C | D
---|---|---|---
A | F | T | F | F
B | T | F | F | F
C | F | T | F | T
D | F | F | F | F
```
Adjacency matrix properties

- Running time to:
 - Get a vertex's out-edges: $O(|V|)$
 - Get a vertex's in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 - $|V|^2$ bits

- If graph is weighted, put weights in matrix instead of booleans
 - If weight of 0 is not allowed, can use that for "not an edge"

- Best for dense graphs

Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list (e.g., linked list) of all adjacent vertices

Adjacency List Properties

- Running time to:
 - Get all of a vertex's out-edges: $O(d)$ where d is out-degree of vertex
 - Get all of a vertex's in-edges: $O(|E|)$ (but could keep a second adjacency list for this!)
 - Decide if some edge exists:
 - $O(d)$ where d is out-degree of source
 - Insert an edge: $O(1)$
 - Delete an edge: $O(d)$ where d is out-degree of source

- Space requirements:
 - $O(|V| + |E|)$

- Best for sparse graphs: so usually just stick with linked lists

Undirected graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Can save 2x space if you want, but may slow down operations in languages with "proper" 2D arrays (not Java)
 - How would you "get all neighbors"?
- Lists: Each edge in two lists to support efficient "get all neighbors"

Example:
Next…

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

• **Shortest paths**: Find the shortest or lowest-cost path from x to y
 – Related: Determine if there even is such a path