

CSE332: Data Abstractions Lecture 14: Beyond Comparison Sorting

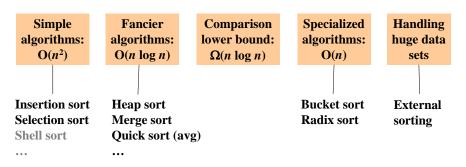
Dan Grossman Spring 2010

How fast can we sort?

- Heapsort & mergesort have O(n log n) worst-case running time
- Quicksort has O(n log n) average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...



Spring 2010

CSE332: Data Abstractions

2

Permutations

- Assume we have n elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, n=3

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2] a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

- In general, *n* choices for least element, then *n*-1 for next, then *n*-2 for next, ...
 - n(n-1)(n-2)...(2)(1) = n! possible orderings

Spring 2010 CSE332: Data Abstractions 3 Spring 2010 CSE332: Data Abstractions 4

Describing every comparison sort

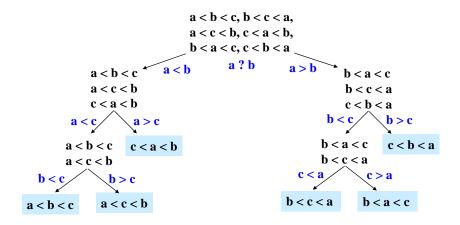
- So every sorting algorithm has to "find" the right answer among the n! possible answers
- Starts "knowing nothing" and gains information with each comparison
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
- · Can represent this process as a decision tree
 - Nodes are "remaining possibilities"
 - Edges are "answers from a comparison"
 - This is not a data structure, it's what our proof uses to represent "the most any algorithm could know"

Spring 2010 CSE332: Data Abstractions 5

What the decision tree tells us

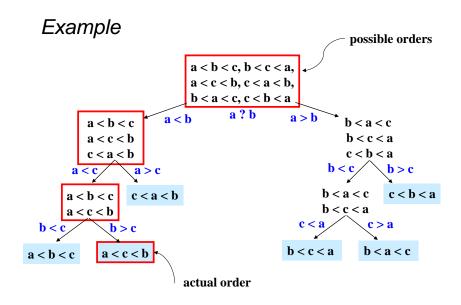
- A binary tree because each comparison has 2 outcomes
 - No duplicate elements
 - Assume algorithm not so dumb as to ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree

Decision tree for n=3



The leaves contain all the possible orderings of a, b, c

Spring 2010 CSE332: Data Abstractions 6



Spring 2010 CSE332: Data Abstractions 7 Spring 2010 CSE332: Data Abstractions 8

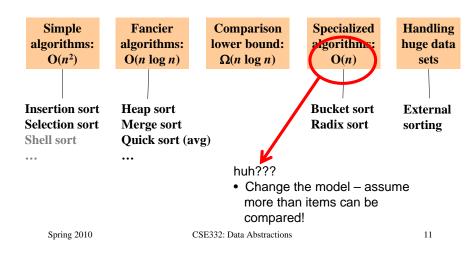
Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with n! leaves
 - Turns out average-case is same asymptotically
- Now: a binary tree with n! leaves has height $\Omega(n \log n)$
 - Factorial function grows very quickly
- Conclusion: (Comparison) Sorting is Ω ($n \log n$)
 - This is an amazing computer-science result: proves all the clever programming in the world can't sort in linear time

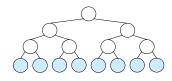
Spring 2010 CSE332: Data Abstractions

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...



Lower bound on height



- The height of a binary tree with L leaves is at least log₂ L
- So the height of our decision tree, h:

$h \ge \log_2(n!)$	property of binary trees
= $log_2 (n^*(n-1)^*(n-2)(2)(1))$	definition of factorial
$= \log_2 n + \log_2 (n-1) + + \log_2 1$	property of logarithms
$\geq \log_2 n + \log_2 (n-1) + + \log_2 (n-1)$	n/2) drop smaller terms (≥0)
\geq (n/2) \log_2 (n/2) each of the	e n/2 terms left is $\geq \log_2 (n/2)$
$= (n/2)(\log_2 n - \log_2 2)$	property of logarithms
$= (1/2) \text{nlog}_2 \text{ n} - (1/2) \text{n}$	arithmetic
$= \Omega (n \log n)$	

Spring 2010 CSE332: Data Abstractions 10

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range), create an array of size K and put each element in its proper bucket (a.ka. bin)
 - If data is only integers, don't even need to store anything more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array		Example:
1	3	K=5
2	1	input (5,1,3,4,3,2,1,1,5,4,5)
3	2	output: 1,1,1,2,3,3,4,4,5,5,5
4	2	
5	3	

Spring 2010 12 CSE332: Data Abstractions

Analyzing bucket sort

- Good when range, K, is smaller (or not much larger) than number of elements, n
 - Don't spend time doing lots of comparisons of duplicates!
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear O(K) pass
- Overall: O(n+K)
 - Linear in n, but also linear in K
 - $-\Omega(n\log n)$ lower bound does not apply because this is not a comparison sort
- For data in addition to integer keys, use list at each bucket

Spring 2010 CSE332: Data Abstractions 13

Radix sort

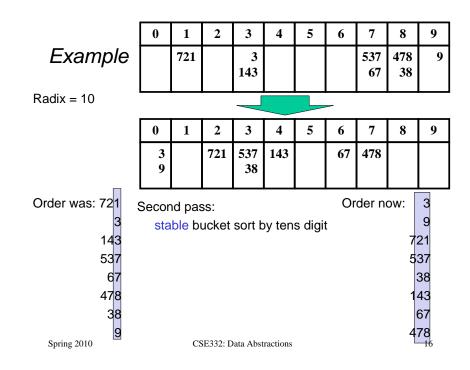
- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit
 - Keeping sort stable
 - After k passes (digits), the last k digits are sorted
- Aside: Origins go back to the 1890 U.S. census

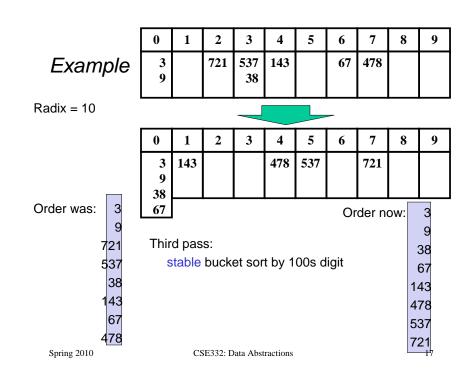
Spring 2010 CSE332: Data Abstractions 14

Example

Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9





Analysis

Input size: n

Number of buckets = Radix: *B* Number of passes = "Digits": *P*

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations plus P and B
 - And radix sort can have poor locality properties

Spring 2010 CSE332: Data Abstractions 18

Last word on sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for "below a cut-off" to help divide-and-conquer sorts
- O(n log n) sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and $O(n^2)$ in worst-case
 - often fastest, but depends on costs of comparisons/copies
- **Ω** (*n* log *n*) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

Spring 2010

CSE332: Data Abstractions

19