The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Simple algorithms: $O(n^2)$
Fancier algorithms: $O(n \log n)$
Comparison lower bound: $\Omega(n \log n)$
Specialized algorithms: $O(n)$
Handling huge data sets

Insertion sort
Selection sort
Shell sort
Heap sort
Merge sort
Quick sort (avg)
Bucket sort
Radix sort

How fast can we sort?

- Heapsort & mergesort have $O(n \log n)$ worst-case running time
- Quicksort has $O(n \log n)$ average-case running times
- These bounds are all tight, actually $\Theta(n \log n)$

So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as $O(n)$ or $O(n \log \log n)$

- Instead: prove that this is impossible

- Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

Permutations

- Assume we have n elements to sort
 - And for simplicity, none are equal (no duplicates)
- How many permutations (possible orderings) of the elements?
- Example, $n=3$
 \[
 \]
- In general, n choices for least element, then $n-1$ for next, then $n-2$ for next, …
 - $n(n-1)(n-2)\ldots(2)(1) = n!$ possible orderings
Describing every comparison sort

- So every sorting algorithm has to “find” the right answer among the n! possible answers
- Starts “knowing nothing” and gains information with each comparison
 - Intuition: At best, each comparison can eliminate half of the remaining possibilities
- Can represent this process as a decision tree
 - Nodes are “remaining possibilities”
 - Edges are “answers from a comparison”
 - This is not a data structure, it’s what our proof uses to represent “the most any algorithm could know”

Decision tree for n=3

What the decision tree tells us

- A binary tree because each comparison has 2 outcomes
 - No duplicate elements
 - Assume algorithm not so dumb as to ask redundant questions
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a leaf (no more questions to ask)
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to one root-to-leaf path in the decision tree
 - So no algorithm can have worst-case running time better than the height of the decision tree

Example
Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with \(n! \) leaves
 - Turns out average-case is same asymptotically

- Now: a binary tree with \(n! \) leaves has height \(\Omega(n \log n) \)
 - Factorial function grows very quickly

- Conclusion: (Comparison) Sorting is \(\Omega(n \log n) \)
 - This is an amazing computer-science result: proves all the clever programming in the world can’t sort in linear time

Lower bound on height

- The height of a binary tree with \(L \) leaves is at least \(\log_2 L \)
- So the height of our decision tree, \(h \):
 \[
 h \geq \log_2 (n!)
 \]
 - property of binary trees
 \[
 = \log_2 (n(n-1)(n-2)\ldots(2)(1))
 \]
 - definition of factorial
 \[
 = \log_2 n + \log_2 (n-1) + \ldots + \log_2 2
 \]
 - property of logarithms
 \[
 \geq \log_2 (\frac{n}{2}) + \log_2 (\frac{n}{2}) + \ldots + \log_2 (\frac{n}{2})
 \]
 - drop smaller terms (\(\geq 0 \))
 \[
 \geq \frac{n}{2} \log_2 (\frac{n}{2})
 \]
 - each of the \(n/2 \) terms left is \(\geq \log_2 (\frac{n}{2}) \)
 \[
 = \frac{n}{2} \log_2 n - \frac{1}{2} \log_2 n
 \]
 - property of logarithms
 \[
 = (\frac{1}{2})n \log_2 n
 \]
 - arithmetic
 \[
 \geq \Omega(n \log n)
 \]

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple algorithms: \(O(n^2) \)

- Insertion sort
- Selection sort
- Shell sort

Fancier algorithms: \(O(n \log n) \)

- Heap sort
- Merge sort
- Quick sort (avg)

Comparison lower bound: \(\Omega(n \log n) \)

Comparison

Specialized algorithms: \(O(n) \)

- Bucket sort
- Radix sort

Handling huge data sets

- External sorting

BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and \(K \) (or any small range), create an array of size \(K \) and put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, don’t even need to store anything more than a \(count \) of how times that bucket has been used
- Output result via linear pass through array of buckets

<table>
<thead>
<tr>
<th>count array</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

- Example:
 - \(K=5 \)
 - input: \(5,1,3,4,3,2,1,1,5,4,5 \)
 - output: \(1,1,1,2,3,3,4,4,5,5,5 \)
Analyzing bucket sort

- Good when range, K, is smaller (or not much larger) than number of elements, n
 - Don’t spend time doing lots of comparisons of duplicates!

- Bad when K is much larger than n
 - Wasted space; wasted time during final linear $O(K)$ pass

- Overall: $O(n+K)$
 - Linear in n, but also linear in K
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort

- For data in addition to integer keys, use list at each bucket

Radix sort

- Radix = “the base of a number system”
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128

- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with least significant digit
 - Keeping sort stable
 - After k passes (digits), the last k digits are sorted

- Aside: Origins go back to the 1890 U.S. census

Example

Radix = 10

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>143</td>
<td>537</td>
<td>478</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input: 478
537
9721
3
38
143
67

First pass: bucket sort by ones digit
Order now: 721
3
143
537
478
9
3
9

Example

Radix = 10

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>721</td>
<td>3</td>
<td>143</td>
<td>537</td>
<td>478</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Order was: 721
3
143
537
478
9
3
9

Second pass: stable bucket sort by tens digit
Order now: 3
9
143
537
478
67
38
143
537
478
67
38
9
3
9
Example

Radix = 10

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>9</td>
<td>721</td>
<td>537</td>
<td>143</td>
<td>67</td>
<td>478</td>
<td>537</td>
<td>721</td>
<td>38</td>
</tr>
</tbody>
</table>

Order was: 3 9 721 537 38 143 67 478

Third pass:
- stable bucket sort by 100s digit

Order now: 3 9 721 537 38 143 67 478

Analysis

Input size: \(n \)

Number of buckets = Radix: \(B \)

Number of passes = “Digits”: \(P \)

Work per pass is 1 bucket sort: \(O(B+n) \)

Total work is \(O(P(B+n)) \)

Compared to comparison sorts, sometimes a win, but often not
- Example: Strings of English letters up to length 15
 - \(15 \times (52 + n) \)
 - This is less than \(n \log n \) only if \(n > 33,000 \)
 - Of course, cross-over point depends on constant factors of
 the implementations plus \(P \) and \(B \)
 - And radix sort can have poor locality properties

Last word on sorting

- Simple \(O(n^2) \) sorts can be fastest for small \(n \)
 - selection sort, insertion sort (latter linear for mostly-sorted)
 - good for “below a cut-off” to help divide-and-conquer sorts
- \(O(n \log n) \) sorts
 - heap sort, in-place but not stable nor parallelizable
 - merge sort, not in place but stable and works as external sort
 - quick sort, in place but not stable and \(O(n^2) \) in worst-case
 - often fastest, but depends on costs of comparisons/copies
- \(\Omega (n \log n) \) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!