
CSE332: Data Abstractions

Lecture 13: Comparison Sorting

Dan Grossman
Spring 2010

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Spring 2010 2CSE332: Data Abstractions

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Start with: How would “normal people (?)” sort?

Insertion Sort
• Idea: At the kth step put the kth element in the correct place among

the first k elements

• “Loop invariant”: when loop index is i, first i elements are sorted

• Alternate way of saying this:
– Sort first two elements
– Now insert 3rd element in order
– Now insert 4th element in order
– …

• Time?
Best-case _____ Worst-case _____ “Average” case ____

Spring 2010 3CSE332: Data Abstractions

Insertion Sort
• Idea: At the kth step put the kth element in the correct place among

the first k elements

• “Loop invariant”: when loop index is i,first i elements are sorted

• Alternate way of saying this:
– Sort first two elements
– Now insert 3rd element in order
– Now insert 4th element in order
– …

• Time?
Best-case O(n) Worst-case O(n2) “Average” case O(n2)

start sorted start reverse sorted (see text)

Spring 2010 4CSE332: Data Abstractions

Selection sort
• Idea: At the kth step, find the smallest element among the not-yet-

sorted elements and put it at position k

• “Loop invariant”: when loop index is i, first i elements are the i
smallest elements in sorted order

• Alternate way of saying this:
– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• Time?
Best-case _____ Worst-case _____ “Average” case ____

Spring 2010 5CSE332: Data Abstractions

Selection sort
• Idea: At the kth step, find the smallest element among the not-yet-

sorted elements and put it at position k

• “Loop invariant”: when loop index is i, first i elements are the i
smallest elements in sorted order

• Alternate way of saying this:
– Find smallest element, put it 1st

– Find next smallest element, put it 2nd

– Find next smallest element, put it 3rd

– …

• Time?
Best-case O(n2) Worst-case O(n2) “Average” case O(n2)

Always T(1) = 1 and T(n) = n + T(n-1)

Spring 2010 6CSE332: Data Abstractions

Mystery

This is one implementation of which sorting algorithm (for ints)?

Spring 2010 7CSE332: Data Abstractions

void mystery(int[] arr) {
for(int i = 1; i < arr.length; i++) {

int tmp = arr[i];
int j;
for(j=i; j > 0 && tmp < arr[j-1]; j--)

arr[j] = arr[j-1];
arr[j] = tmp;

}
}

Note: Like with heaps, “moving the hole” is faster than
unnecessary swapping (constant factor)

Insertion vs. Selection

• They are different algorithms

• They solve the same problem

• They have the same worst-case and average-case asymptotic
complexity
– Insertion-sort has better best-case complexity; preferable

when input is “mostly sorted”

• Other algorithms are more efficient for non-small arrays that are
not already almost sorted

Spring 2010 8CSE332: Data Abstractions

Aside

Why I’m not a fan of bubble sort

– It is not, in my opinion, what a “normal person” would think of
– It doesn’t have good asymptotic complexity: O(n2)
– It’s not particularly efficient with respect to common factors

– Basically, almost everything it is good at some other
algorithm is at least as good at

– So people seem to teach it just because someone taught it
to them

Spring 2010 9CSE332: Data Abstractions

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures…

Spring 2010 10CSE332: Data Abstractions

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort (avg)
…

Bucket sort
Radix sort

External
sorting

Heap sort

• As you saw on project 2, sorting with a heap is easy:
– insert each arr[i], better yet buildHeap
– for(i=0; i < arr.length; i++)

arr[i] = deleteMin();

• Worst-case running time: O(n log n)

• We have the array-to-sort and the heap
– So this is not an in-place sort
– There’s a trick to make it in-place…

Spring 2010 11CSE332: Data Abstractions

In-place heap sort

– Treat the initial array as a heap (via buildHeap)
– When you delete the ith element, put it at arr[n-i]

• It’s not part of the heap anymore!

Spring 2010 12CSE332: Data Abstractions

4 7 5 9 8 6 10 3 2 1

sorted partheap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted partheap part

But this reverse sorts –
how would you fix that?

“AVL sort”

• We can also use a balanced tree to:
– insert each element: total time O(n log n)
– Repeatedly deleteMin: total time O(n log n)

• But this cannot be made in-place and has worse constant
factors than heap sort
– heap sort is better
– both are O(n log n) in worst, best, and average case
– neither parallelizes well

• Don’t even think about trying to sort with a hash table

Spring 2010 13CSE332: Data Abstractions

Divide and conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Solve the parts independently
– Think recursion
– Or potential parallelism

3. Combine solution of parts to produce overall solution

(The name “divide and conquer” is rather clever.)

Spring 2010 14CSE332: Data Abstractions

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

1. Mergesort: Sort the left half of the elements (recursion)
Sort the right half of the elements (recursion)
Merge the two sorted halves into a sorted whole

2. Quicksort: Pick a “pivot” element
Divide elements into less-than pivot

and greater-than pivot
Sort the two divisions (recursion twice)
Answer is sorted-less-than then pivot then

sorted-greater-than

Spring 2010 15CSE332: Data Abstractions

Mergesort

• To sort array from position lo to position hi:
– If range is 1 element long, it’s sorted! (Base case)
– Else:

• Sort from lo to (hi+lo)/2
• Sort from (hi+lo)/2 to hi
• Merge the two halves together

• Merging takes two sorted parts and sorts everything
– O(n) but requires auxiliary space…

Spring 2010 16CSE332: Data Abstractions

8 2 9 4 5 3 1 6

Example, focus on merging

Start with:

Spring 2010 17CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 18CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 19CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 20CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 21CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 22CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 23CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 24CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 25CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

Example, focus on merging

Start with:

Spring 2010 26CSE332: Data Abstractions

8 2 9 4 5 3 1 6

After recursion:
(not magic ☺)

2 4 8 9 1 3 5 6

Merge:
Use 3 “fingers”
and 1 more array

1 2 3 4 5 6 8 9

(After merge,
copy back to
original array)

1 2 3 4 5 6 8 9

Example, showing recursion

Spring 2010 27CSE332: Data Abstractions

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2

2 8

2 4 8 9

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

1 3 5 6

Some details: saving a little time
• In our example, we copied the “dregs” into the auxiliary array,

but that’s unnecessary right before copying back
– If left-side finishes first, just stop the merge:

– If right-side finishes first, copy dregs directly into right side

Spring 2010 28CSE332: Data Abstractions

copy

first

second

Some details: saving space / copying

Simplest / worst approach:
Use a new auxiliary array of size (hi-lo) for every merge

Better:
Use a new auxiliary array of size n for every merging stage

Better:
Reuse same auxiliary array of size n for every merging stage

Best (but a little tricky):
Don’t copy back – at 2nd, 4th, 6th, … merging stages, use the
original array as the auxiliary array and vice-versa
– Need one copy at end if number of stages is odd

Spring 2010 29CSE332: Data Abstractions

Picture of the “best”

Arguably easier to code up without recursion at all

Spring 2010 30CSE332: Data Abstractions

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

Linked lists and big data

We defined the sorting problem as over an array, but sometimes
you want to sort linked lists

One approach:
– Convert to array: O(n)
– Sort: O(n log n)
– Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly
– heapsort and quicksort do not
– insertion sort and selection sort do but they’re slower

Mergesort is also the sort of choice for external sorting
– Linear merges minimize disk accesses

Spring 2010 31CSE332: Data Abstractions

Analysis

Having defined an algorithm and argued it is correct, we should
analyze its running time (and space):

To sort n elements, we:
– Return immediately if n=1
– Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:
T(1) = c1

T(n) = 2T(n/2) + c2n

Spring 2010 32CSE332: Data Abstractions

One of the recurrence classics…

(For simplicity let constants be 1 – no effect on asymptotic answer)

T(1) = 1 So total is 2kT(n/2k) + kn where
T(n) = 2T(n/2) + n n/2k = 1, i.e., log n = k

= 2(2T(n/4) + n/2) + n That is, 2log n T(1) + n log n
= 4T(n/4) + 2n = n + n log n
= 4(2T(n/8) + n/4) + 2n = O(n log n)
= 8T(n/8) + 3n
….
= 2kT(n/2k) + kn

Spring 2010 33CSE332: Data Abstractions

Or more intuitively…
This recurrence comes up often enough you should just “know” it’s

O(n log n)

Merge sort is relatively easy to intuit (best, worst, and average):
• The recursion “tree” will have log n height
• At each level we do a total amount of merging equal to n

Spring 2010 34CSE332: Data Abstractions

Quicksort

• Also uses divide-and-conquer

• Does not need auxiliary space

• O(n log n) on average, but O(n2) worst-case

• Faster than mergesort in practice?
– Often believed so
– Does fewer copies and more comparisons, so it depends on

the relative cost of these two operations!

But we’re getting ahead of ourselves, how does it work…

Spring 2010 35CSE332: Data Abstractions

Quicksort overview

1. Pick a pivot element

2. Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is, “as simple as A, B, C”

(Alas, there are some details lurking in this algorithm)

Spring 2010 36CSE332: Data Abstractions

Think in terms of sets

Spring 2010 37CSE332: Data Abstractions

13 81
92

43
65

31 57

26
75 0

S select pivot value

13 8192
43 6531

5726
750S1 S2 partition S

13 4331 57260
S1

81 927565
S2

QuickSort(S1) and
QuickSort(S2)

13 4331 57260 65 81 9275S Presto! S is sorted

[Weiss]

Example, showing recursion

Spring 2010 38CSE332: Data Abstractions

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

6 8 9

Details

We haven’t explained:

• How to pick the pivot element
– Any choice is correct: data will end up sorted
– But as analysis will show, want the two partitions to be about

equal in size

• How to implement partitioning
– In linear time
– In place

Spring 2010 39CSE332: Data Abstractions

Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)…

• Pick arr[lo] or arr[hi-1]
– Fast, but worst-case is (mostly) sorted input

• Pick random element in the range
– Does as well as any technique, but (pseudo)random number

generation can be slow
– (Still probably the most elegant approach)

• Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
– Common heuristic that tends to work well

Spring 2010 40CSE332: Data Abstractions

Partitioning

• Conceptually simple, but hardest part to code up correctly
– After picking pivot, need to partition in linear time in place

• One approach (there are slightly fancier ones):
1. Swap pivot with arr[lo]
2. Use two fingers i and j, starting at lo+1 and hi-1
3.while (i < j)

if (arr[j] > pivot) j--
else if (arr[i] < pivot) i++
else swap arr[i] with arr[j]

4. Swap pivot with arr[i]

Spring 2010 41CSE332: Data Abstractions

Example

• Step one: pick pivot as median of 3
– lo = 0, hi = 10

Spring 2010 42CSE332: Data Abstractions

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

• Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

Spring 2010 43CSE332: Data Abstractions

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

Analysis

• Best-case: Pivot is always the median
T(0)=T(1)=1
T(n)=2T(n/2) + n -- linear-time partition
Same recurrence as mergesort: O(n log n)

• Worst-case: Pivot is always smallest or largest element
T(0)=T(1)=1
T(n) = 1T(n-1) + n
Basically same recurrence as selection sort: O(n2)

• Average-case (e.g., with random pivot)
– O(n log n), not responsible for proof (in text)

Spring 2010 44CSE332: Data Abstractions

Cutoffs

• For small n, all that recursion tends to cost more than doing a
quadratic sort
– Remember asymptotic complexity is for large n

• Common engineering technique: switch to a different algorithm
for subproblems below a cutoff
– Reasonable rule of thumb: use insertion sort for n < 10

• Notes:
– Could also use a cutoff for merge sort
– Cutoffs are also the norm with parallel algorithms

• switch to sequential
– None of this affects asymptotic complexity

Spring 2010 45CSE332: Data Abstractions

Cutoff skeleton

Spring 2010 46CSE332: Data Abstractions

void quicksort(int[] arr, int lo, int hi) {
if(hi – lo < CUTOFF)

insertionSort(arr,lo,hi);
else

…
}

Notice how this cuts out the vast majority of the recursive calls
– Think of the recursive calls to quicksort as a tree
– Trims out the bottom layers of the tree

