

CSE332: Data Abstractions

Lecture 13: Comparison Sorting

Dan Grossman Spring 2010

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Insertion Sort

- Idea: At the kth step put the kth element in the correct place among the first k elements
- "Loop invariant": when loop index is i, first i elements are sorted •
- Alternate way of saying this:
 - Sort first two elements
 - Now insert 3rd element in order
 - Now insert 4th element in order
 - ...
- Time?

Best-case _____ Worst-case _____ "Average" case _____

Best-case O(n)	Worst-case O(n ²)	"Average" case O(n ²)
start sorted	start reverse sorted	(see text)

Selection sort

- Idea: At the kth step, find the smallest element among the not-yetsorted elements and put it at position k
- "Loop invariant": when loop index is i, first i elements are the i ٠ smallest elements in sorted order
- Alternate way of saying this:
 - Find smallest element, put it 1st
 - Find next smallest element, put it 2nd
 - Find next smallest element, put it 3rd
 - ...
- Time?

Best-case _____ Worst-case _____ "Average" case _

Spring	2010

CSE332: Data Abstractions

Mystery

This is one implementation of which sorting algorithm (for ints)?

```
void mystery(int[] arr) {
  for(int i = 1; i < arr.length; i++) {</pre>
     int tmp = arr[i];
     int j;
     for(j=i; j > 0 && tmp < arr[j-1]; j--)</pre>
        arr[j] = arr[j-1];
     arr[j] = tmp;
  }
```

Note: Like with heaps, "moving the hole" is faster than unnecessary swapping (constant factor)

Spring	2010
--------	------

5

Selection sort

• Idea: At the kth step, find the smallest element among the not-yetsorted elements and put it at position k "Loop invariant": when loop index is i, first i elements are the i smallest elements in sorted order • Alternate way of saying this: Find smallest element, put it 1st Find next smallest element, put it 2nd - Find next smallest element, put it 3rd - ... • Time? Best-case $O(n^2)$ Worst-case $O(n^2)$ "Average" case $O(n^2)$ Always T(1) = 1 and T(n) = n + T(n-1)Spring 2010 CSE332: Data Abstractions 6

Insertion vs. Selection

- They are different algorithms
- They solve the same problem
- They have the same worst-case and average-case asymptotic complexity
 - Insertion-sort has better best-case complexity; preferable when input is "mostly sorted"
- Other algorithms are more efficient for non-small arrays that are not already almost sorted

Aside

Why I'm not a fan of bubble sort

- It is not, in my opinion, what a "normal person" would think of
- It doesn't have good asymptotic complexity: $O(n^2)$
- It's not particularly efficient with respect to common factors
- Basically, almost everything it is good at some other algorithm is at least as good at
- So people seem to teach it just because someone taught it to them

CSE332: Data Abstractions

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Heap sort

Spring 2010

- As you saw on project 2, sorting with a heap is easy:
 - insert each arr[i], better yet buildHeap
 - for(i=0; i < arr.length; i++)</pre> arr[i] = deleteMin();
- Worst-case running time: O(n log n)
- · We have the array-to-sort and the heap
 - So this is not an in-place sort
 - There's a trick to make it in-place...

"AVL sort"

- We can also use a balanced tree to:
 - insert each element: total time O(n log n)
 - Repeatedly deleteMin: total time O(n log n)
- But this cannot be made in-place and has worse constant factors than heap sort
 - heap sort is better
 - both are $O(n \log n)$ in worst, best, and average case

CSE332: Data Abstractions

- neither parallelizes well
- Don't even think about trying to sort with a hash table

Divide and conquer

Very important technique in algorithm design

- 1. Divide problem into smaller parts
- 2. Solve the parts independently
 - Think recursion
 - Or potential parallelism
- 3. Combine solution of parts to produce overall solution

(The name "divide and conquer" is rather clever.)

Spring	2010
--------	------

CSE332: Data Abstractions

Divide-and-conquer sorting

Two great sorting methods are fundamentally divide-and-conquer

- 1. Mergesort: Sort the left half of the elements (recursion) Sort the right half of the elements (recursion) Merge the two sorted halves into a sorted whole
- 2. Quicksort: Pick a "pivot" element Divide elements into less-than pivot and greater-than pivot Sort the two divisions (recursion twice) Answer is sorted-less-than then pivot then sorted-greater-than

Mergesort

- To sort array from position 10 to position hi:
 - If range is 1 element long, it's sorted! (Base case)
 - Else:
 - Sort from lo to (hi+lo)/2
 - Sort from (hi+lo)/2 to hi
 - · Merge the two halves together
- Merging takes two sorted parts and sorts everything
 O(n) but requires auxiliary space...

Spring 2010

13

Example, focus on merging

Example, focus on merging

Example, focus on merging

Example, focus on merging

Spring 2010

CSE332: Data Abstractions

Example, focus on merging

Example, focus on merging

Example, focus on merging

Example, focus on merging

Spring 2010

Example, focus on merging

Example, focus on merging

Example, showing recursion

Some details: saving a little time

- In our example, we copied the "dregs" into the auxiliary array, but that's unnecessary right before copying back
 - If left-side finishes first, just stop the merge:

- If right-side finishes first, copy dregs directly into right side

Some details: saving space / copying

Simplest / worst approach:

Use a new auxiliary array of size (hi-lo) for every merge

Better:

Use a new auxiliary array of size ${\tt n}$ for every merging stage

Better:

Reuse same auxiliary array of size ${\bf n}$ for every merging stage

Best (but a little tricky):

Don't copy back – at 2^{nd} , 4^{th} , 6^{th} , ... merging stages, use the original array as the auxiliary array and vice-versa

- Need one copy at end if number of stages is odd

Spring 2010

```
CSE332: Data Abstractions
```

Picture of the "best"

Arguably easier to code up without recursion at all

Linked lists and big data

We defined the sorting problem as over an array, but sometimes you want to sort linked lists

One approach:

- Convert to array: O(n)
- Sort: O(n log n)
- Convert back to list: O(n)

Or: mergesort works very nicely on linked lists directly

- heapsort and quicksort do not
- insertion sort and selection sort do but they're slower

Mergesort is also the sort of choice for external sorting

- Linear merges minimize disk accesses

31

29

Analysis

Having defined an algorithm and argued it is correct, we should analyze its running time (and space):

To sort *n* elements, we:

- Return immediately if n=1
- Else do 2 subproblems of size n/2 and then an O(n) merge

Recurrence relation:

 $T(1) = c_1$ $T(n) = 2T(n/2) + c_2 n$

One of the recurrence classics...

(For simplicity let constants be 1 - no effect on asymptotic answer)

T(1) = 1 T(n) = 2T(n/2) + n = 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n = 4(2T(n/8) + n/4) + 2n = 8T(n/8) + 3n 	So total is $2^{\mathbf{k}}T(n/2^{\mathbf{k}}) + kn$ wh $n/2^{\mathbf{k}} = 1$, i.e., log n = k That is, $2^{\log n} T(1) + n \log n$ $= n + n \log n$ $= O(n \log n)$	ere	Merge sort • The rec • At each
$= 2^{\mathbf{k}} T(n/2^{\mathbf{k}}) + kn$			
Spring 2010 CSE332: Da	ta Abstractions	33	Spring 2010
Quicksort			Quicks
 Also uses divide-and-conquer Does not need auxiliary space O(n log n) on average, but O(Pick a Partitic A. The

- Faster than mergesort in practice?
 - Often believed so
 - Does fewer copies and more comparisons, so it depends on the relative cost of these two operations!

But we're getting ahead of ourselves, how does it work...

Or more intuitively...

This recurrence comes up often enough you should just "know" it's $O(n \log n)$

Merge sort is relatively easy to intuit (best, worst, and average):

- The recursion "tree" will have log n height
- At each level we do a *total* amount of merging equal to n

34

Quicksort overview

- 1. Pick a pivot element
- 2. Partition all the data into:
 - A. The elements less than the pivot
 - B. The pivot
 - C. The elements greater than the pivot
- 3. Recursively sort A and C
- 4. The answer is, "as simple as A, B, C"

(Alas, there are some details lurking in this algorithm)

Spring 2010

5 3 1 6

8 9 6

6 8 9

38

Details

We haven't explained:

- How to pick the pivot element
 - Any choice is correct: data will end up sorted
 - But as analysis will show, want the two partitions to be about equal in size
- How to implement partitioning
 - In linear time
 - In place

Potential pivot rules

While sorting arr from lo (inclusive) to hi (exclusive)...

- Pick arr[lo] or arr[hi-1]
 - Fast, but worst-case is (mostly) sorted input
- Pick random element in the range
 - Does as well as any technique, but (pseudo)random number generation can be slow
 - (Still probably the most elegant approach)
- Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
 - Common heuristic that tends to work well

Partitioning

- Conceptually simple, but hardest part to code up correctly - After picking pivot, need to partition in linear time in place
- One approach (there are slightly fancier ones):
 - 1. Swap pivot with arr[lo]
 - 2. Use two fingers i and j, starting at lo+1 and hi-1
 - 3.while (i < j)
 - if (arr[j] > pivot) j--
 - else if (arr[i] < pivot) i++</pre>

6 1

6

1

5 1

else swap arr[i] with arr[j]

CSE332: Data Abstractions

4 9 0 3 5 2

0 3 5 2

3

3

5

5

2 0 3 6 9 7 8

0

4. Swap pivot with arr[i]

Example

 Step one: pick pivot as median of 3 -10 = 0, hi = 10

0	1	2	3	4	5	6	7	8	9
8	1	4	9	0	3	5	2	7	6

Step two: move pivot to the lo position


```
Spring 2010
```

CSE332: Data Abstractions

Spring 2010

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

Spring 2010

4

4 2 0

4 9

43

41

Often have more than one swap during partition -

this is a short example

7 8

7 8

8

9

9 7 8 Analysis

- · Best-case: Pivot is always the median T(0)=T(1)=1T(n)=2T(n/2) + n-- linear-time partition Same recurrence as mergesort: $O(n \log n)$
- · Worst-case: Pivot is always smallest or largest element T(0)=T(1)=1T(n) = 1T(n-1) + nBasically same recurrence as selection sort: $O(n^2)$
- Average-case (e.g., with random pivot) $- O(n \log n)$, not responsible for proof (in text)

```
Spring 2010
```

Cutoffs

- For small *n*, all that recursion tends to cost more than doing a quadratic sort
 - Remember asymptotic complexity is for large n
- Common engineering technique: switch to a different algorithm for subproblems below a cutoff
 - Reasonable rule of thumb: use insertion sort for n < 10

CSE332: Data Abstractions

• Notes:

Spring 2010

- Could also use a cutoff for merge sort
- Cutoffs are also the norm with parallel algorithms
 - switch to sequential
- None of this affects asymptotic complexity

```
45 Sping 2010 CSE33: Data Abstractions
```