
AVL Deletion:

Case #1: Left-left due to right deletion

Spring 2010CSE332: Data Abstractions1

h

a

Z

Y

b

X

h+1 h

h+1

h+2

h+3
b

ZY

ah+1

h

h+1

h+2

X

h
h+1

• Same single rotation as when an insert in the left-left grandchild caused

imbalance due to X becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up

the tree might still be necessary

AVL Deletion:

Case #2: Left-right due to right deletion

Spring 2010

a

h-1
h

h

VU

h+1

h+2

h+3

Z

X

b

c

h+1

h

c

X

h-1

h+1

h

h+1

VU

h+2

Z

ab

h h+1

h

• Same double rotation when an insert in the left-right grandchild caused

imbalance due to c becoming taller

• But here the “height” at the top decreases, so more rebalancing farther up

the tree might still be necessary

AVL Deletion:

Case #3: Case 1 revisited

Spring 2010CSE332: Data Abstractions3

h

a

Z

Y

b

X

h+1 h+1

h+1

h+2

h+3
b

ZY

ah+1

h+1

h+2

h+3

X

h
h+1

• What if both children have same height (h+1)?

• Do same as case 1; single rotation

• Why can’t we do the double rotation from case 2?

B-Trees

 Smaller keys on left, larger on right

 All data in leaves

 Need to decide:

 # of items per leaf

 # of items per internal node

6

8

9

10

12

14

16

17

20

22

27

28

32

34

38

39

41

44

47

49

50

60

70

12 44

6 20 27 34 50

19

24

1

2

4

B-Tree Operations
Insertion

1. Traverse from the root to the proper leaf. Insert
the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!

 Split the leaf into two leaves:

 Original leaf with (L+1)/2 items

 New leaf with (L+1)/2 items

 Attach the new child to the parent

 Adding new key to parent in sorted order

3. If an internal node has M+1 children, overflow!

 Split the node into two nodes

 Original node with (M+1)/2 children

 New node with (M+1)/2 children

 Attach the new child to the parent

 Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent
overflow too

 So repeat step 3 up the tree until a node
doesn’t overflow

 If the root overflows, make a new root with
two children

 This is the only case that increases the tree
height

Deletion
1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!
If a neighbor has > L/2 items, adopt and

update parent
Else merge node with neighbor

Guaranteed to have a legal number of items
Parent now has one less node

3. If step (2) caused the parent to have M/2 - 1
children, underflow!
If an internal node has M/2 - 1 children

If a neighbor has > M/2 items, adopt and
update parent

Else merge node with neighbor
Guaranteed to have a legal number of items
Parent now has one less node, may need to

continue up the tree

If we merge all the way up through the root, that’s fine
unless the root went from 2 children to 1

In that case, delete the root and make child the
root

This is the only case that decreases tree height

Somewhat complex; we won’t go into details…

Aside: Limitations of B-Trees in Java

6

Whole point of B-Trees is to minimize disk accesses

It is worth knowing enough about “how Java works” to

understand why B-Trees in Java aren’t what we want

 Assuming our goal is efficient number of disk accesses

 Java has many advantages, but it wasn’t designed for this

The problem is extra levels of indirection…

One approach

7

Say we int keys, and some data E
interface Keyed<E> {
int key(E);

}
class BTreeNode<E> {

static final int M = 128;

int[] keys = new int[M-1];

BTreeNode<E>[] children = new BTreeNode[M];

int numChildren = 0;

…

}
class BTreeLeaf<E> {

static final int L = 32;
E[] data = (E[])new Object[L];

int numItems = 0;
…

}

The problem: how Java stores stuff in memory

What that looks like

8

BTreeNode (3 objects with “header words”)

M-1 12 20 45

M

70

BTreeLeaf (data objects not in contiguous memory)

20

(larger key array)

(larger pointer array)

L … (larger array)

All the red references

indicate unnecessary

indirection

The moral

9

 The whole idea behind B trees was to keep related data

in contiguous memory

 But that’s “the best you can do” in Java

 Java’s advantage is generic, reusable code

 C# may have better support for “flattening objects into

arrays”

 C and C++ definitely do

 Levels of indirection matter!

Picking a hash function

10

 If keys aren’t ints, the client must convert to an int
 Trade-off: speed and distinct keys hashing to distinct ints

 Very important example: Strings
 Key space K = s0s1s2…sm-1

 Where si are chars: si  [0,51] or si  [0,255] or si  [0,216-1]

 Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) = % TableSize

3. h(K) = % TableSize

What causes collisions for each?

1

0

m

i

i

s




 
 
 
















1

0

37
k

i

i

is

Anything w/ same first

letter

Any rearrangement of

letters

Hmm… not so clear

Java-esque String Hash

11

 Java characters in Unicode format; 216 bits

 So this would require n-2 + n-3 + n-4 +… multiplications

to compute, right?

 Can compute efficiently via a trick called Horner’s Rule:

 Idea: Avoid expensive computation of 31k

 Say n=4

 h=((s[0]*31+s[1])*31+s[2])*31+s[3]

 Under what circumstances could this hash function prove

poor?

Hash functions

12

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. When smashing two hashes into one hash, use bitwise-xor

 Problem with Bitwise AND?

 Produces too many 0 bits

 Problem with Bitwise OR?

 Produces too many 1 bits

3. Rely on expertise of others; consult books and other
resources

4. If keys are known ahead of time, choose a perfect hash

