1. Run-times

	Run-time
Kruskal's MST	$\|\mathrm{E}\| \log \|\mathrm{V}\|$
Dijkstra's	$\|\mathrm{E}\| \log \|\mathrm{V}\|+\|\mathrm{V}\| \log \|\mathrm{V}\|$ or $\|\mathrm{V}\|^{2}$
Topological sort	$\|\mathrm{V}\|+\|\mathrm{E}\|$

2. Graphs
a. Draw the following graph: $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
$E=\{(a, b): 2,(a, c): 5,(a, d): 14,(b, c): 4,(b, d): 12,(b, e): 1,(c, d): 7,(c, e): 1,(d, e): 9\}$ where $(x, y): z$ represents an undirected edge between $x \& y$ with weight z.

b. Find a minimal spanning tree using Kruskal's algorithm.

Only the final table \& up-tree are shown here:
Table of edges by weights:
1: (b,e) - accepted
1: (c,e) -accepted
2: (a, b) - accepted
4: (b,c) - rejected
5: (a,c) - rejected
7: (c,d) - accepted
9: (d, e)
12: (b,d)
14: (a,d)

c. Find the shortest path from a to each vertex using Dijkstra's algorithm.

	Known	Cost	Path
a	Y	0	-
b	Y	2	a
c	Y	5	a
d	Y	12	e
e	Y	3	b

d. Dijkstra's algorithm does not necessarily work when the graph possesses negative weights. Will Kruskal's algorithm work with negative weights?

Yes - negative weights won't cause any errors in Kruskal's algorithm.

