
UW CSE 331 Spring 2023

CSE 331
Software Design & Implementation

Spring 2023
Section 10 – Final Review

1

Administrivia

• Final Exam on Tuesday (6/6) in KNE 110
– Lecture B: 2:30-4:20 pm
– Lecture A: 4:30-6:20 pm
– Primarily focused on loop reasoning and ADTs

• HW9 due tomorrow at 11:00 pm (6/2)

Subtypes – Review

• Recall that subtypes are substitutable for supertype
– If B is a subtype of A, can send B where A is expected

• For ADTs, we use this as our definition of subtypes
• For B to be substitutable for A, must satisfy 2 conditions:
 1) B must provide all methods of A
 2) B’s corresponding methods must…

– Accept all inputs that A’s does
– Must also promise everything in A’s postcondition
– i.e., B must have the same or stronger spec

Equality – Review

• Often useful / necessary to define your own equals
• Properties of equals method:
 1) equal(a,a) = T reflexive
 2) equal(a,b) = equal(b,a) symmetric
 3) if equal(a,b) and equal(b,c),
 then equal(a,c) transitive

Design Patterns – Review

• 3 categories of patterns:
– Creational:

• Builder: Object that helps with creation of another object
– lets you describe what you want bit by bit
– Good for immutable types

– Structural:
• Adaptor: often needed with nominal typing

– Design pattern for working around language issue
– Behavioral:

• Interpreter: Collects code for similar objects, spreads apart
code for operations

– Easy to add objects, hard to add methods
• Procedural: Collects code for similar operations, spreads

apart code for objects
– Easy to add methods, hard to add objects

Loop Reasoning – Review
Fill in the missing parts of the implementation of insert. Your code must be correct with the
provided invariant. (You do not need to include a proof, but it must be correct).
/**
* Returns the value in A that is the smallest out of all values in A that are larger than x
* @param x A number to compare to the values in A.
* @param A A list of numbers
* @param requires A != null
* @returns the smallest of all values in A larger than x
*/
public int nextLargest(A: number[], x: number): number {
 hasLarger: boolean = ______;
 minLarger: number = _____________;
 i: number = __;

 {{ Inv: minLarger = the min value in A[0…i-1] that is larger than x. If no such value exists, hasLarger = false}}
 while (i < A.length) {
 if (x < A[i]) {
 hasLarger = true;
 if (A[i] < minLarger) {
 minLarger = A[i];
 }
 }
 i = i + 1;
 }
 if (!hasLarger) {
 throw new Error(“nothing smaller”);
 }
 return minLarger;
}

Loop Reasoning – Midterm
Remember this definition from the previous midterm:

Fill in the missing parts of the implementation of insert. Your code must be correct with the
provided invariant. (You do not need to include a proof, but it must be correct).

Loop Reasoning – Midterm
insert = (x: string): StringSet => {
 const k = findIndex(this.elems, x);
 if (__) {
 return this;
 }
 // Create an array one longer than this.elems.
 const E: string[] = new Array(this.elems.length + 1);
 // Define A := this.elems[0…k-1]
 let i: number = __;
 // Inv: E[0…i-1] = A[0…i-1]
 while (________) {
 E[i] = this.elems[i];
 i = i + 1;
 }
 // Now we have E[0…i-1] = A and i = k
 E[i] = x;
 i = i + 1;
 // Now we have E[0…i-1] = A ++ [x] and i = k + 1
 // Define B := this.elems[k…this.elems.length-1]. Thus we have this.elems = A ++ B
 let j: number = __;
 // Inv: E[0 .. i - 1] = A ++ [x] ++ B[0 .. j - 1] and i = k + 1 + j
 while (___________________) {
 E[i] = this.elems[k + j];
 i = i + 1;
 j = j + 1;
 }
 return new ArrayStringSet(E);
}

Loop Reasoning – Midterm
Remember this definition from the previous midterm:

(a) Use reasoning to fill in all blank assertions. The ‘Pi’s should be filled in with
forward reasoning and the ‘Qi’s with backwards reasoning

(b) Prove Pi implies Qi for i = 1,2,3

Loop Reasoning – Midterm
The precondition is that A[j] ≥ A[j + 1] for any 0 ≤ j < n-1, where n is A.length

let k: number = A.length;
{{ P1: ________ }}
{{ Inv: x ≥ A[j] for and k ≤ j < n and k ≥ 0 }}
while (k !== 0 && x >= A[k–1]) {
 {{ P2: ___ }}
 {{ Q2: ___ }}
 k = k – 1;
 {{ _______________________________________ }}
}
{{ P3: ___ }}
{{ Q3: A[j] > x for any 0 ≤ j < k and x ≥ A[j] for any k ≤ j < n }}
return k;

ADTs – Review
Suppose we have an implementation of a queue using a list, prove the AF holds after the execution of
the function

class ArrayQueue {
 // RI: 0 <= front < list.length
 // AF: obj = list[front…list.length-1]
 list: number[];
 front: number = 0;
 // adds element to end of queue
 // @effects obj = obj_0 ++ [x]
 enqueue = (x: number): void => {
 this.list.push(x);
 }
 // removes element from front of queue
 // @effects obj_0 = [x] ++ obj if queue is not empty, obj otherwise
 // @returns x if queue is not empty, -1 otherwise
 dequeue = (): number => {
 let x: number;
 if (this.front < this.list.length) {
 x = this.list[this.front];
 this.front = this.front + 1;
 return x;
 }
 return -1;
 }
}

Design Pattern – Review
Choose the name of the design pattern that best matches the description below.
(a) We have a program that uses Complex number objects, but we have two possible

implementation of Complex - one uses rectangular coordinates, the other uses Polar. We
want the program to be able to select during execution which version to use when a new
Complex object is created, and not have that decision fixed when the program is compiled.

(b) We have a complicated object with many configurations options. We would like to organize
constructors with 12 parameters to set all of the configurations options all at once.

(c) We have a library function that performs calculations using metric units and we want to use it
to implement a function that does the same thing, only with U.S. units.

Subtyping – Review
Suppose the class Point3D is a subtype of Point. Which of the functions of Point3D
below properly override the function of Point so that Point3D is still substitutable for
Point (circle all that apply)?
interface Point {
 setX(x: number): void;
 setY(y: number): void;
 // @requires this.x != x and this.y != y
 distance(x: number, y:number): number;
}

(a)
interface Point3D extends Point {
 setX(x: number | string): void;
 setY(y: number | string): void;
 setZ(z: number | string): void;
 // @requires this.x != x and this.y != y
 distance(x: number, y: number): number;
}

(b)
interface Point3D extends Point {
 setX(x: number): void;
 setY(y: number): void;
 setZ(z: number): void;
 // @requires this.x != x and this.y != y
 distance(x: number, y: number): number | string;
}

(c)
interface Point3D extends Point {
 setX(x: number): void;
 setY(y: number): void;
 setZ(z: number): void;
 @returns distance that is < 10
 distance(x: number, y: number): number;
}

