
UW CSE 331 Spring 2023

CSE 331
Software Design & Implementation

Spring 2023
Section 8 – Midterm Review

1

Administrivia

• Midterm on Friday (5/19) during usual class time
• HW8 released on late Friday/Saturday (5/19)

– Due Friday (5/26) @ 11:00pm

Stateful UI in React – Review

• UI so far has been static (Made UI changes by reloading page)
– index.tsx was calls render to show a fixed UI

• Must call setState to change the state (React will automatically re-
render when state changes)

• Render can use both this.props and this.state

type HiProps = {name: string};
type HiState = {currName: string};
class HiElem extends Component<HiProps, HiState> {

constructor(props: HiProps) {
super(props);
this.state = {currName: this.props.name};

}
setName = (newName: string): void => {

this.setState({currName: newName});
}
render = (): JSX.Element {

return <p> Hi, {this.state.currName}</p>;
}

}

(readonly)

Initial value set in the constructor.
NEVER directly modified after

Event Handler – Review

React Reminders – Review

• Make sure you declare your methods this way
onClick = (evt: MouseEvent<HTMLButtonElement) => {…};

• Note that setState is not instant
– It adds an event that later updates the state (React tries to

batch multiple updates together)
• Any state on the screen must be stored in some state

– Text in any INPUT element must be in some state (ex:
buttons, textboxes, etc.)

• NEVER modify anything in render
• NEVER modify this.state outside of constructor

– Use this.setState() instead

Question 1-3

Make sure to run npm install --no-audit in both the
server directory and client directory. Then run npm
start in both directories

Definitions for Homework

Midterm Review

UW CSE 331 Spring 2023 8

Writing Loops – Midterm Review
Given the following loop invariant, fill in the body of the code that reverses an array in place. For
your convenience, you can use a function swap(arr: number[], i: number, j: number)
that takes in an array arr and swaps the elements at i and j.
Hint: Remember that swap changes the elements at BOTH indexes. How does that affect the
exit condition?
function reverseArray(s: number[]): void {

const n: number = s.length;
let i: number = ____;

{{ s[0…i-1] = rev(s_0[n-i…n-1]) and s[n-i .. n-1] = rev(s0[0 .. i-1]) }}
while (__________) {

i = i + 1;
}
{{ s[0…s.length-1] = rev(s_0[0…s.length-1]) }}

}

Reasoning – Review
Below is an implementation of a non so efficient sorting algorithm, insertion sort. Fill in the missing assertions where Pi’s are
from forward reasoning and Qi’s are from backward reasoning. Then, prove that Pi implies Qi for i = 1, 2, 3, 4
function insertionSort(A: number[]): void {

let i: number = 0;
{{ P1: }}
{{ Inv1: A[k] <= A[k+1] for any 0 <= k < i-1 }}
while (i !== A.length) {

let j: number = i - 1;
let val: number = A[i];
{{ P2: __ }}
{{ Inv2: val = A[j + 1] and A[j + 1] <=… <= A[i] and A[0] <= A[1] <= … <= A[j - 1] <= A[j] }}
while (j !== -1 && A[j] > val) {

{{ P3: _______________________________ }}
{{ Q3: ___}}
A[j + 1] = A[j];
A[j] = val;
j = j - 1;

}
{{ P4: __ }}
{{ Q4: ______________________ }}
i = i + 1;

}
{{ P5: ____________ }}
{{ Q5: A[k] <= A[k+1] for any 0 <= k < n-1 }}

}

Invariant Reasoning – Review

(a) Given the above function specification and definition of dup, come up with an invariant that is a
weakening of the postcondition and an exit condition.

/**
* Duplicates each element of an array
* @param arr an array of numbers
* @returns dup(arr)
*/
function duplicate(arr : number[]) : number[] { .. }

(b) Implement the loop with the invariant above.

func dup([]) := []
dup(L ⧺ [x]) := dup(L) ⧺ [x] ⧺ [x]

