CSE 331
Software Design & Implementation

Spring 2023
Section 8 — Midterm Review

UW CSE 331 Spring 2023

Administrivia

« Midterm on Friday (5/19) during usual class time
« HWS8 released on late Friday/Saturday (5/19)
— Due Friday (5/26) @ 11:00pm

Stateful Ul in React — Review

« Ul so far has been static (Made Ul changes by reloading page)
— index.tsx was calls render to show a fixed Ul

type HiProps

{name: string};

type HiState = {currName: string}; ‘__,,_———(readonhu

class HiElem extends Component<HiProps, HiState> {

constructor(props: HiProps) {
super(props);

this.state = {currName: this.props.name};

}
setName = (newName: string): void => {
this.setState({currName: newName});

}
render = (): JSX.Element {

return <p> Hi, {this.state.currName}</p>;
}
}

Initial value set in the constructor.

—)
NEVER directly modified after

« Must call setState to change the state (React will automatically re-

render when state changes)

 Render can use both this.props and this.state

Event Handler — Review

* Pass method to be called as argument
— value of onClick attribute is our makeSpanish method

render = (): JSX.Element {
return (<div>
<p>{this.state.greeting}, {this.props.name}!</p>
<button onClick={this.makeSpanish}>Espanol</button>
Lrding) ;
}i

 Browser will invoke that method when button is clicked

makeSpanish = (evt: MouseEvent<HTMLButtonElement>) => {
this.setState ({greeting: “Hola”});

b

— Call to setState causes a re-render (in a bit)

React Reminders — Review

Make sure you declare your methods this way
onClick = (evt: MouseEvent<HTMLButtonElement) => {..};
* Note that setState is not instant

— It adds an event that later updates the state (React tries to
batch multiple updates together)

* Any state on the screen must be stored in some state

— Text in any INPUT element must be in some state (ex:
buttons, textboxes, etc.)

 NEVER modify anything in render
 NEVER modify this.state outside of constructor
— Use this.setState() instead

Question 1-3

git clone https://gitlab.cs.washington.edu/cse331-23sp-materials/sec-squares.git

Make sure to run npm install --no-audit in both the
server directory and client directory. Then run npm
start in both directories

Definitions for Homework

type BST := empty
| node(x:Z, S:BST, T :BST) with conditions A and B

Suppose that we wanted to have a way to refer to a specific node in a BST. One way to do so would be
to give directions from the root to that node. If we define these types:

type Dir == S | T
type Path := Listp;,

then a Path tells you how to get to a particular node. For example, cons(.S, cons(7’, nil)) says to select the “S”
child of the parent and then the “T"" child of that node, giving us a grand-child of the root node.

Midterm Review

UW CSE 331 Spring 2023

Writing Loops — Midterm Review

Given the following loop invariant, fill in the body of the code that reverses an array in place. For
your convenience, you can use a function swap(arr: number[], i: number, j: number)
that takes in an array arr and swaps the elements at i and j.

Hint: Remember that swap changes the elements at BOTH indexes. How does that affect the
exit condition?

function reverseArray(s: number[]): void {
const n: number = s.length;
let i: number = ;

{{ s[0..i-1] = rev(s_©@[n-i..n-1]) and s[n-i .. n-1] = rev(s@[0 .. i-1]) }}
while () {

i=1+1;
}
{{ s[0@..s.length-1] = rev(s_0[0..s.length-1]) }}

Reasoning — Review

Below is an implementation of a non so efficient sorting algorithm, insertion sort. Fill in the missing assertions where P/’s are
from forward reasoning and Qs are from backward reasoning. Then, prove that P; implies Q; fori=1, 2, 3, 4

function insertionSort(A: number[]): void {

let i: number = 0;
{{ P1: 1}
{{ Invl: A[k] <= A[k+1] for any @ <= k < i-1 }}
while (i !== A.length) {
let j: number = i - 1;

let val: number = A[i];
{ p2: i
{{ Inv2: val = A[J + 1] and A[J + 1] <=.. <= A[i] and A[@] <= A[1] <= .. <= A[J - 1] <= A[]] }}
while (j !== -1 && A[j] > val) {
{{ P3: I3
{{ Q3: H
Al + 1] = A[J]1;
A[j] = val;
Jj=3-%

}
{{ P4: b}

{{ Q4: I3

i=1+1;

}

pPs 3
{{ Q5: A[k] <= A[k+1] for any © <= k < n-1 }}

Invariant Reasoning — Review

func dup([]) =] [

dup(L # [x]) = dup(L) # [x] # [x] = Duplicates each element of an array
* @param arr an array of numbers

* @returns dup(arr)
*/

function duplicate(arr : number[]) : number[] { ..

(a) Given the above function specification and definition of dup, come up with an invariant that is a
weakening of the postcondition and an exit condition.

(b) Implement the loop with the invariant above.

