
UW CSE 331 Spring 2023

CSE 331

Software Design & Implementation

Spring 2023

Section 7 – Imperative Programming III

1



Administrivia

• HW7 released later today

– Due Wednesday (5/17) @ 11:00pm

• Midterm on Friday (5/19) during usual class time



Mutable ADTs – Review

• Adding mutations can give us better efficiency

– Saved memory

– With arrays, gained ability to access any element

• However, with more mutations mean more complex reasoning

– More facts to keep track of

– More ways to make mistakes

– More work to ensure we did it right

• With mutable heap state:

– Must keep track of every alias that could mutate that state 
(Rep Invariant)

– Previously, only needed to confirm RI held at end of 
constructor. Now we must ensure it holds for ANY method 
that could mutate the object



Avoiding Rep Exposure – Review

• Exposing your ADT to the client could potentially allow them to 

violate the Rep Invariant and break your code

• Using aliases increases risk of introducing unwanted bugs

• Options for avoiding rep exposure:

1. Copy In, Copy Out – stores copies of mutable values 

passed to you and returns copies of not aliases to mutable 

state

2. Use immutable types – lists are immutable, so you can 

freely accept and return them



Defensive Programming – Review

• Write code to check preconditions

• Can also write code to check postconditions

• Write code to check loop invariants and Rep Invariant (checkRep
function)

– Make the program crash if any of the invariants are violated 
(it is always better for your program to crash then run silently 
with a bug)



Question 1

Assume L and R are sorted and have distinct elements.



Question 1a



Question 2



Question 2 continued



Question 3



Set ADT

• One use of a sorted array of distinct elements is to represent a 

set!

– A set only cares about whether an element is present so 

when storing elements, so order does not matter

– However, from the previous problems, sorted order provides 

benefits of calculating operations such as “with” and “without”

– We can also define other set-like operations with this 

representation

• Notice that this is just an ADT!

– The client would have the functionality of a set without ever 

knowing a list was used to implement it

• What are some ideas for the Representation Invariant for this 

ADT will be? What about Abstract Function?



Set Operations

Set – collection that only contains unique objects

Union (A ∪ B)– a set containing all the elements of A or B (or both). 

– Notice this is just the definition of “with(L,R)”!

– Ex: 

A = [1, 2, 3] B = [2, 4]

A ∪ B = [1, 2, 3, 4]

Compliment (A′) – a set containing all the elements of U that does 
not appear in A. The set U must also contain all the elements of A.

– Ex:

U = [1, 2, 3, 4] A = [2, 4]

A′ (in respect to U) = [1, 3]

Intersection (A ∩ B) – the set of elements in A that are also in B

– Ex:

A = [1, 2, 3] B = [2, 4]

A ∩ B = [2]

This is also the set difference 

of U in respect to A



Question 4


	Slide 1: CSE 331 Software Design & Implementation
	Slide 2: Administrivia
	Slide 3: Mutable ADTs – Review
	Slide 4: Avoiding Rep Exposure – Review
	Slide 5: Defensive Programming – Review
	Slide 6: Question 1
	Slide 7: Question 1a
	Slide 8: Question 2
	Slide 9: Question 2 continued
	Slide 10: Question 3
	Slide 11: Set ADT
	Slide 12: Set Operations
	Slide 13: Question 4

