
UW CSE 331 Spring 2023

CSE 331

Software Design & Implementation

Spring 2023

Section 6 – Imperative Programming II

1

Administrivia

• HW6 released later today

– Due Wednesday (5/10) @ 11:00pm

Arrays – Review

• Allows easy access both A[0] and A[n-1]. Where n =
A.length

– Bottom-up loops are now easy

• However, when we write “A[j]”, we must also check 0 ≤ j < n

– New possibilities for bugs

– TypeScript will not help us with this

• Array Concatenation – define operation “⧺” as array

concatenation (makes clear arguments are arrays, not numbers)

• Following properties hold for any arrays, A, B, C:

– A ⧺ [] = A = [] ⧺ A (“identity”)

– A ⧺ (B ⧺ C) = (A ⧺ B) ⧺ C (“associativity”)

Mutating Arrays – Review

• Assigning to array elements changes know state:

{{ A[j-1] < A[j] for any 1 ≤ j ≤ 5 }}

A[0] = 100;

{{ A[0] = 100 and A[j-1] < A[j] for any 2 ≤ j ≤ 5 }}

• Can add to the end of an array:

A.push(100);

{{ A = A0 ⧺ [100] }}

• Can remove from the end of an array:

A.pop();

{{ A = A0[0…n-1] }} A has one fewer element than before

Loop Invariants with Arrays – Review

• Heuristic for loop invariants: weaken the postcondition

– Inv is just a weakening of the Post

– Inv is simple an assertion that allows the post condition as a

special case

– Must also allow states that are easy to prepare

• Ex:

Loop Invariants with Arrays – Review

• Loop invariants allow for both start and stop states

• Algorithm Idea:

– How you will get from start to stop state (e.g. j=j+1)

– What partial progress looks like (e.g. loop invariant)

Specifying Functions – Review

• By default, no parameters are mutated

– Must explicitly say that mutation is possible (default is not)

/**

* Reorder A so that the numbers are in increasing order

* @param A array of numbers to be sorted

* @modifies A

* @effects A contains the same numbers but now in
increasing order

*/

quickSort(A: number[]): void { ... }

– Anything that might be changed is listed in @modifies

• Not a promise to modify it – A could already by sorted!

– @effects gives the promise about result after mutation

• Like @returns but for mutated values, not return values.

Client-Side vs Server-Side – Review

• Client-Side JavaScript

– Code so far has run inside the browser

• webpack-dev-server handles HTTP requests

• Sends back our code to the browser

– In the browser, executes code of index.tsx

• Server-Side JavaScript

– Can run code in the server as well

• Returns different data for each request (HTML, JSON,

etc.)

– Can have code in both browser and server

Client-Side vs Server-Side – Review

Code only on

browser

Server-Side

vs.

Client-Side

Code on

browser and

server

Custom Server

function F(req: Request, res: Response): void {

const name: string | undefined = req.query.name;

if (name === undefined) {

res.status(400).send(“Missing ‘name’”);

return;

}

res.send({message: `Hi, ${name}`});

}

const app = express();

app.get(“/foo”, F);

app.listen(8080);

• Request for https://localhost:8080/foo will call F
• Mapping from “/foo” to F is called a “route”

• Can have as many routes as we want (with different URLs)

• Set status to 400 to indicate a client error

(Bad Request)

• Set status to 500 to indicate server error

• Default status is 200 (OK)

• send of string returned as Text/HTML

• send of record returned as JSON

- client will then be able to parse it into a JS record

- record can contain string, number, null, arrays, records

(no undefined)

https://localhost:8080/foo

Custom Server

Question 2a

Question 2b

Question 3

Question 3 continued

Question 4

	Slide 1: CSE 331 Software Design & Implementation
	Slide 2: Administrivia
	Slide 3: Arrays – Review
	Slide 4: Mutating Arrays – Review
	Slide 5: Loop Invariants with Arrays – Review
	Slide 6: Loop Invariants with Arrays – Review
	Slide 7: Specifying Functions – Review
	Slide 8: Client-Side vs Server-Side – Review
	Slide 9: Client-Side vs Server-Side – Review
	Slide 10: Custom Server
	Slide 11: Custom Server
	Slide 12: Question 2a
	Slide 13: Question 2b
	Slide 14: Question 3
	Slide 15: Question 3 continued
	Slide 16: Question 4

