CSE 331
Software Design & Implementation

Spring 2023
Section 5 — Imperative Programming |

UW CSE 331 Spring 2023

Administrivia

« HWS5 released later today
— Due Wednesday (5/3) @ 11:00pm

Hoare Triples — Review

« A Hoare Triple has 2 assertions and some code

{PH
S

{Q}}
— P is a precondition, Q is the postcondition
— Sis the code
« Triple is “valid” if the code is correct:
— S takes any state satisfying P into a state satisfying Q

 Does not matter what the code does if P does not hold
initially

Stronger Assertion vs Spec — Review

« Assertion is stronger iff it holds in a subset of states

Q,

« Specification is stronger iff
— Postcondition is stronger
» Guarantees more specific output
— Precondition is weaker
 Allows more input

Forward Reasoning — Review

» Forwards reasoning fills in the postcondition
— Gives strongest postcondition making the triple valid
* Apply forward reasoning to fill in R
{{P}}]
l S 1
(R} }2
{{Q}

— First triple is always valid

— Only need to check second triple (only proving implication
since no code is present)

Mutations in Forward Reasoning — Review

« With variable mutations, we need to give new names to initial
values

— Will use “x” and “y
for earlier values

to refer to current values and “x,” and “y,"

{w=x+y}}
x = 4;
{{w=xo+yandx=41}}
y = 3;
v {{w=xo+ypandx=4andy=3}}

« If Xy = f(x), then we can simplify this to

l {P}}
{{ P[x '—>f(x)] 1} no need for, e.g., “and x = xo + 1”

— If assignment is “x= x, +17, then “x, =x-1"

Backward Reasoning — Review

« Backwards reasoning fills in preconditions
— Gives weakest precondition making the triple valid
* Apply backwards reasoning to fill in R

{ry }1
{R}
2

[s
{ey

— Second triple is always valid
— Only need to check first triple (implication only)

« Backwards reasoning is just substitution (so mechanically
simpler than forward reasoning) ({Q[xr vy}

X =Yy

{Q}}

Conditionals — Review

« Want to use both forward reasoning and backwards reasoning to
avoid “or”

{{}}
if (n >=0) {
Pl1: n >= 0
H } :I— Check this: 2*n+1=n+n+1
m = 2%n + 1; 2n+ 1 sincenz0
>n since1>0
} else {

{{ P2: n< @ }} 1) Use forward reasoning to push the initial assertion from the
conditional (red)

} 3) Prove the implication from the forward reasoned assertion
{{m>n}} (P1/P2) to the backwards reasoned assertion (Q1/Q2) (blue)

Loop Invariant — Review

* Loop invariant is true every time at the top of the loop

{Inv:1}}
while (cond) {

S
}

— Must be true when we get to the top the first time
— Must remain true each time executes S and look back up
* Use “Inv:” to indicate loop invariant
— Otherwise, this only claims to be true the first time at the loop

Proving Correctness — Review

{P}}] 1. I holds initially
{{Inv:1}}

while (cond) {
{{Iand cond }}]
S 2. S preserves |
{ry i

}
{{1and not cond }}

{Q} -

3. Q holds when loop exits

Splits correctness into three parts

1. I holds initially implication
2. S preserves] forward/back then implication

3. Q holds when loop exits implication

Question 1b

(b) Use forward reasoning to fill in the missing assertions (strongest postconditions) in the following code.
Then prove that the stated postcondition holds.

{z <3}

y =x + 4;

{ b3
X = 2 % X

{ B
y=y*tx

{ 1

{y <14}}

Question 2a

(a) Use backward reasoning to fill in the missing assertions (weakest preconditions) in the following code.
Then prove that the stated precondition implies what is required for the code to be correct.

Feel free to simplify the intermediate assertions (i.e., rewrite them in an equivalent, but simpler, way).
However, the assertions you write must be equivalent to still be weakest preconditions.

{r<w+1}

{ b

y =3 % w;

{ b

{ 1

Question 3b

(b) Use forward reasoning to fill in P, and P, with the strongest postconditions at these two lines. Then, use
backward reasoning to fill in ()1 and Q2 with the weakest preconditions at those lines. Finally, complete
the correctness proof by showing that P, implies ()1 and P> implies QQs.

fo=0}
if (x >=6) {
{F: B
{@:: 1}
y = 2xx - 10;
{ 1
} else {
{P: B
{Q2: 1}

y = 20 - 3*x;
{ 1}
}

{y>1}

Question 4

In this problem, we will prove that the following code correctly calculates sum-abs(L). The invariant for
the loop is already provided. It references Lg, which is the initial value of L when the function starts.

let s: number = O;
{Inv: s+ sum-abs(L) = sum-abs(Lg) }}
while (L !== nil) {

if (L.hd < 0) {

func sum-abs(nil) =0
s = s + -L.hd; . .
sum-abs(cons(z, L)) := —x +sum-abs(L) if x <0 forany x:Z and L : List
} else { sum-abs(cons(z, L)) := x + sum-abs(L) if >0 forany x:Z and L : List
s = s + L.hd;
}
L =L.tl;

+
{{ s = sum-abs(Ly) }}

(a) Prove that the invariant is true when we get to the top of the loop the first time.

(b) Prove that, when we exit the loop, the postcondition holds.

Question 4 — continued

(c) Prove that the invariant is preserved by the body of the loop. You can do this by any combination of
forward and backward reasoning.

We have previously used the fact that, when L # nil, we know that L = cons(z, R) for some = : Z
and R : List. However, in the code, we know exactly what = and R are, namely, + = L.hd and R = L.tl.
Hence, when L # nil, we actually have L = cons(L.hd, L.tl). Feel free to use that in your proof.

Question 6

Recall the function “swap”, which swaps adjacent elements in a list:

func swap(nil) = nil
swap(cons(a, nil)) := cons(a, nil) for any a : 7Z
swap(cons(a,cons(b, L))) := cons(b,cons(a,swap(L))) for any a,b:Z and L : List

This function is defined recursively on a list argument so it fits the “top-down” template from lecture.

For simplicity, we will require the list to always have an even number of elements. Thus, the middle case
in the above definition will not occur.

(a) Using the template described in lecture, give the invariant for a loop implementation of this function.

As in the template, we will have a variable “R" that stores the partially-completed answer (reversed).
(b) How do we initialize R so that the invariant is true initially?

(c) When do we exit the loop? What should the condition of the while be?

(d) The template tells us to move down the list by setting L = L.t1. However, swap makes its recursive call
on a list that is shorter by two elements, so our loop body should try to move forward by two elements.

What code do we write so that the list gets shorter by two elements and the invariant remains true?

Be careful! Remember that R stores the partial answer in reverse order!

