
UW CSE 331 Spring 2023

CSE 331
Software Design & Implementation

Spring 2023
Section 5 – Imperative Programming I

1



Administrivia

• HW5 released later today
– Due Wednesday (5/3) @ 11:00pm



Hoare Triples – Review

• A Hoare Triple has 2 assertions and some code
{{ P }}

S
{{ Q }}

– P is a precondition, Q is the postcondition 
– S is the code

• Triple is “valid” if the code is correct:
– S takes any state satisfying P into a state satisfying Q

• Does not matter what the code does if P does not hold 
initially



Stronger Assertion vs Spec – Review

• Assertion is stronger iff it holds in a subset of states

• Specification is stronger iff
– Postcondition is stronger

• Guarantees more specific output
– Precondition is weaker

• Allows more input



Forward Reasoning – Review

• Forwards reasoning fills in the postcondition
– Gives strongest postcondition making the triple valid

• Apply forward reasoning to fill in R

– First triple is always valid
– Only need to check second triple (only proving implication 

since no code is present)



Mutations in Forward Reasoning – Review

• With variable mutations, we need to give new names to initial 
values
– Will use “x” and “y” to refer to current values and “x0” and “y0” 

for earlier values

• If x0 = f(x), then we can simplify this to 

– If assignment is “x= x0 +1”, then “x0 =x-1”



Backward Reasoning – Review

• Backwards reasoning fills in preconditions
– Gives weakest precondition making the triple valid

• Apply backwards reasoning to fill in R

– Second triple is always valid
– Only need to check first triple (implication only)

• Backwards reasoning is just substitution (so mechanically 
simpler than forward reasoning)



Conditionals – Review

• Want to use both forward reasoning and backwards reasoning to 
avoid “or”

{{}}
if (n >= 0) {

{{ P1: n >= 0 }}
{{ Q1: 2*n + 1 > n }}
m = 2*n + 1;
{{ m > n }}

} else {
{{ P2: n < 0 }}
{{ Q2: 0 > n }}
m = 0
{{ m > n }}

}
{{ m > n }}

1) Use forward reasoning to push the initial assertion from the 
conditional (red)

2) Use backwards reasoning from the given postcondition and 
push it to the top of the conditional (orange)

3) Prove the implication from the forward reasoned assertion 
(P1/P2) to the backwards reasoned assertion (Q1/Q2) (blue)

Check this: 2*n+1 = n + n + 1
≥ n + 1 since n ≥ 0
> n since 1 > 0



Loop Invariant – Review

• Loop invariant is true every time at the top of the loop 

– \

– Must be true when we get to the top the first time
– Must remain true each time executes S and look back up

• Use “Inv:” to indicate loop invariant
– Otherwise, this only claims to be true the first time at the loop



Proving Correctness – Review



Question 1b



Question 2a



Question 3b



Question 4



Question 4 – continued



Question 6


