CSE 331
Software Design & Implementation

Spring 2023
Section 4 — Functional Programming |l

UW CSE 331 Spring 2023

Administrivia

« HWA4 released later today
— Due Wednesday (4/26) @ 11:00pm

« Deadline to sign up for personal gitlab repos is tonight at 5pm.
Please fill out the google form if you want a gitlab repo

Abstraction Barrier — Review

Abstraction Barrier

Function . Client

Implementation Function Call

Function Specification

» Specifications acts as the “barrier” between each side

— This improves understandability, changeabillity, and
modularity

» Clients can only depend on the spec
* Implementer can write any code that satisfies the spec

Defining Interfaces

interface FastList {

getlLast () : number |undefined; TypeSCI’ipt
tolList () : List<number>;
}i
—
—

interface FastList {
int getlLast () throws EmptyList; Java
List<Integer> toList () ;

Readonly — Typescript

* The prefix readonly” is used to make a property as read-only
— Value cannot be changed
— Protects variables from unwanted mutations

EX:
class FastLastListImpl extends FastList {
readonly last: number | undefined;
readonly list: List<number>;

Abstract Data Class — Example

class FastlLastListImpl extends FastList {

readonly last: number | undefined;
readonly list: List<number>;

constructor (list: List<number>) {
this.last = last(list);
this.list = 1list;

}

getLast = () => { return this.last; }

tolList = () => { return this.list; }

Can create new record using “new”
new FastlLastListImpl(list);

interface FastList ({
getLast () : number |undefined;
toList () : List<number>;

b

Specifications for ADTs — Review

 New Terminology for specifying ADTs
— Concrete State / Representation (Code)
 Actual fields of the record and the data stored
e« Ex: { list: List, last: number | undefined }
— Abstract State / Representation (Math)
» How clients should think about the object
« EX: List (i.e., nil or cons)

Specifications for ADTs — Review

/**
* A list of integers that can retrieve the last

* element in O(l) time.
*/

export interface FastList {

/-k*

* Returns the object as a regular list of items.

* @returns obj .. __We want to give the clients the

*/ abstract state specification
toList () : List<number>

 We want to hide the details of the representation from the client
(ex: fields are hidden from clients)

Documenting ADTs — Review

Abstract Function (AF) — defines what abstract state the field
values currently represent

— Maps the field values to the object they represent
« Output is math, so this is a mathematical function

Representation Invariants (RI) — facts about the field values that
will always be true

— Constructor must always make sure Rl is true at runtime
« Can assume RI is true when reasoning about methods
* AF only needs to make sense when RI holds
» Must ensure that RI always holds

Documenting ADTs — Review

class FastListImpl extends FastList {
// RI: this.last = last(this.list)
// AF: obj = this.list

/** @returns last(obj) */
getLast () : number | undefined {

return this.last;

 Use both Rl and AF to check correctness

last(obj) = last(this.list) by AF
= this.last by RI

Question 4

func size(empty) =0
size(node(x, S, T)) = 1+ size(S) + size(T)
func height(empty) = —1
height(node(x, S, 7)) := 1+ height(S) for any x:Z and S,T : Tree

Prove by structural induction that, for any left-leaning tree T', we have

size(T) < 2height(T)+1 _1

Question 4

func size(empty) =0
size(node(x, S, T)) = 1+ size(S) + size(T)
func height(empty) = —1
height(node(x, S, 7)) := 1+ height(S) for any x:Z and S,T : Tree

Prove by structural induction that, for any left-leaning tree T', we have

size(T) < 2height(T)+1 _1

Hint:

1) Define the tree in your IH according to the definition of tree
‘node(x, S, T)" so you can access the left and right trees

2) Remember the exponent rule: x¥* x = xy*1

Question 1 & 2 — Coding

git clone git@gitlab.cs.washington.edu:cse331-23sp-materials/sec-highlight.git

The application allows the user to type in the coordinates for a list of points and then draws them on a canvas
as shown in this picture:

The background of the canvas is striped to show distance from the origin (the upper-left corner). Colors are
drawn differently depending on whether they are in a blue or beige stripe.

Question 3

func len(nil) =0
len(cons(a, L)) := 1+len(L) foranya:Aand L: List
func sep(nil, z) = (nil, nil)
sep(cons(y, L), x) := (cons(y, A),B) ify<uaz
sep(cons(y, L), x) := (A,cons(y,B)) ifx <y

where (A, B) := sep(L, x)

A call to sep(L, x) returns a pair of lists (A, B), where A contains all the elements of L that are less than or
equal to = and B contains all the elements that are greater than .

Prove by induction on the list L that len(A) + len(B) = len(L), where (A, B) = sep(L,z). Note that,
because the recursive case of sep is split into cases, you will need to handle the inductive step by cases as well.

Note: in the recursive case, you make a call to sep(L,x) which then takes the
return value of that call (A, B), then finally cons y on to A or B and returns (A,
cons(y, B)) or (cons(y, A), B)

	Slide 1: CSE 331 Software Design & Implementation
	Slide 2: Administrivia
	Slide 3: Abstraction Barrier – Review
	Slide 4: Defining Interfaces
	Slide 5: Readonly – Typescript
	Slide 6: Abstract Data Class – Example
	Slide 7: Specifications for ADTs – Review
	Slide 8: Specifications for ADTs – Review
	Slide 9: Documenting ADTs – Review
	Slide 10: Documenting ADTs – Review
	Slide 11: Question 4
	Slide 12: Question 4
	Slide 13: Question 1 & 2 – Coding
	Slide 14: Question 3

