
UW CSE 331 Spring 2023

CSE 331

Software Design & Implementation

Spring 2023

Section 4 – Functional Programming III

1



Administrivia

• HW4 released later today

– Due Wednesday (4/26) @ 11:00pm

• Deadline to sign up for personal gitlab repos is tonight at 5pm. 

Please fill out the google form if you want a gitlab repo



Abstraction Barrier – Review

• Specifications acts as the “barrier” between each side

– This improves understandability, changeability, and 

modularity

• Clients can only depend on the spec

• Implementer can write any code that satisfies the spec



Defining Interfaces

Typescript 

Java 



Readonly – Typescript

• The prefix `readonly` is used to make a property as read-only

– Value cannot be changed

– Protects variables from unwanted mutations

Ex:

class FastLastListImpl extends FastList {

readonly last: number | undefined;

readonly list: List<number>;

}



Abstract Data Class – Example

class FastLastListImpl extends FastList {

readonly last: number | undefined;

readonly list: List<number>;

constructor (list: List<number>) {

this.last = last(list);

this.list = list;

}

getLast = () => { return this.last; }

toList = () => { return this.list; }

}

• Can create new record using “new”

new FastLastListImpl(list);



Specifications for ADTs – Review

• New Terminology for specifying ADTs

– Concrete State / Representation (Code)

• Actual fields of the record and the data stored

• Ex: { list: List, last: number | undefined }

– Abstract State / Representation (Math)

• How clients should think about the object

• Ex: List (i.e., nil or cons)



Specifications for ADTs – Review

• We want to hide the details of the representation from the client 
(ex: fields are hidden from clients)

We want to give the clients the 

abstract state specification



Documenting ADTs – Review

Abstract Function (AF) – defines what abstract state the field 

values currently represent

– Maps the field values to the object they represent

• Output is math, so this is a mathematical function

Representation Invariants (RI) – facts about the field values that 

will always be true

– Constructor must always make sure RI is true at runtime

• Can assume RI is true when reasoning about methods

• AF only needs to make sense when RI holds

• Must ensure that RI always holds



Documenting ADTs – Review



Question 4



Question 4

Hint: 

1) Define the tree in your IH according to the definition of tree 

`node(x, S, T)` so you can access the left and right trees

2) Remember the exponent rule: xy * x = xy+1



Question 1 & 2 – Coding



Question 3

Note: in the recursive case, you make a call to sep(L,x) which then takes the 

return value of that call (A, B), then finally cons y on to A or B and returns (A, 

cons(y, B)) or (cons(y, A), B)


	Slide 1: CSE 331 Software Design & Implementation
	Slide 2: Administrivia
	Slide 3: Abstraction Barrier – Review
	Slide 4: Defining Interfaces
	Slide 5: Readonly – Typescript
	Slide 6: Abstract Data Class – Example
	Slide 7: Specifications for ADTs – Review
	Slide 8: Specifications for ADTs – Review
	Slide 9: Documenting ADTs – Review
	Slide 10: Documenting ADTs – Review
	Slide 11: Question 4
	Slide 12: Question 4
	Slide 13: Question 1 & 2 – Coding
	Slide 14: Question 3

