CSE 331
 Software Design \& Implementation

Spring 2023
Section 3 - Functional Programming II

Administrivia

- HW3 released later today
- Due Wednesday (4/19) @ 11:00pm
- Google Form for Student GitLab Repo (here) - Optional
- If you would like to have a dedicated student repo for this course to maintain version control

Structural Induction - Review

- Let $P(S)$ be the claim
- To Prove $\mathrm{P}(\mathrm{S})$ holds for any list S, we need to prove two implications:
- Base Case: prove P(nil)
- Use any know facts and definitions
- Inductive Step: prove $\mathrm{P}(\operatorname{cons}(\mathrm{x}, \mathrm{L}))$ for any x : Z, L : List
- Direct proof
- Use know facts and definition and Inductive Hypothesis
- Inductive Hypothesis: assume $\mathrm{P}(\mathrm{L})$ is true
- Use this in the inductive step ONLY
- Assuming we know $P(S)$, if we prove $P(\operatorname{cons}(x, L))$, we then prove recursively that $P(S)$ holds for any List

Defining Function By Cases - Review

- Sometimes we want to define functions with other cases
- E.g. define $f(n)$ where $\mathrm{n}: Z$

$$
\begin{aligned}
\text { func } f(n) & :=2 n+1 & & \text { if } n \geq 0 \\
f(n) & :=0 & & \text { if } n<0
\end{aligned}
$$

- To use the definition $f(m)$, we need to know if $m>0$ or not
- Because of this structure, the proof needs to look different

Proof By Cases - Review

- New code structure means we need new proof structures
- Can split a proof into cases:
- E.g. a = True and $\mathrm{a}=$ False
- E.g. $\mathrm{n}>=0$ and $\mathrm{n}<0$
- These cases needs to be exhaustive
- Ex:

$$
\begin{aligned}
\text { func } f(n):=2 n+1 & \text { if } n \geq 0 \\
f(n) & :=0
\end{aligned}
$$

Prove that $\mathrm{f}(\mathrm{n}) \geq \mathrm{n}$ for any $\mathrm{n}: \mathbb{Z}$

```
Case n \geq 0:
    f(n)= ..\geqn
    in general
Case n < 0:
\[
\begin{aligned}
\mathrm{f}(\mathrm{n})=0 & \text { def of } \mathrm{f}(\text { since } \mathrm{n}<0) \\
>\mathrm{n} & \text { since } \mathrm{n}<0
\end{aligned}
\]
```

 Since these 2 cases are exhaustive, \(f(n)>=n\) holds

Question 1

We are asked to write a function pseudo-sort that takes a list as an argument, "looks at the first two numbers, moves the smaller of those to the front, and then continues on the rest of the list after the first element".
(a) Write a formal definition for this English definition?
(b) Show by example that pseudo-sort does not actually sort the list.

Question 1

We are asked to write a function pseudo-sort that takes a list as an argument, "looks at the first two numbers, moves the smaller of those to the front, and then continues on the rest of the list after the first element".
(a) Write a formal definition for this English definition?
func pseudo-sort(nil)
pseudo-sort(cons(a, nil)) := cons(a, nil) for any a:Z
pseudo-sort(cons(a, cons(b, L))) := cons(a, pseudo-sort(cons(b, L))) B
pseudo-sort(cons(a, cons(b, L))) := cons(b, pseudo-sort(cons(a, L))) C Where B is "for any $\mathrm{a}, \mathrm{b}: Z$ and L : List with $\mathrm{a}<=\mathrm{b}$ " and C is "for any $\mathrm{a}, \mathrm{b}: Z$ and L : List with $\mathrm{a}>\mathrm{b}$ "
(b) Show by example that pseudo-sort does not actually sort the list.

Question 1

We are asked to write a function pseudo-sort that takes a list as an argument, "looks at the first two numbers, moves the smaller of those to the front, and then continues on the rest of the list after the first element".
(a) Write a formal definition for this English definition?
func pseudo-sort(nil)
pseudo-sort(cons(a, nil)) pseudo-sort(cons(a, cons(b, L))) pseudo-sort(cons(a, cons(b, L)))

$$
:=\text { nil }
$$

$$
:=\operatorname{cons}(\mathrm{a}, \mathrm{nil})
$$

for any a: Z

$$
:=\text { cons }(a, \text { pseudo-sort(cons(b, L))) } B
$$

$$
:=\operatorname{cons}(\mathrm{b}, \text { pseudo-sort(cons(a, L))) C }
$$ Where B is "for any $\mathrm{a}, \mathrm{b}: Z$ and L : List with $\mathrm{a}<=\mathrm{b}$ " and C is "for any $\mathrm{a}, \mathrm{b}: Z$ and L : List with $\mathrm{a}>\mathrm{b}$ "

(b) Show by example that pseudo-sort does not actually sort the list.

We can see that:

$$
\begin{array}{ll}
\text { func pseudo-sort(cons(2, cons(3, cons(1, nil)))) } & \\
=\operatorname{cons}(2, \operatorname{pseudo}-\operatorname{sort}(\operatorname{cons}(3, \operatorname{cons}(1, \text { nil) }))) & \\
=\operatorname{cons}(2, \operatorname{cons}(1, \operatorname{pseudo}-\operatorname{sort}(\operatorname{cons}(3, \text { nil) }))) & \\
=\operatorname{cons}(2, \operatorname{cons}(1, \operatorname{cons}(3, \text { nil }))) &
\end{array}
$$

However, the sorted list is cons(1, cons(2, cons(3, nil)))

Question 2

```
You see following snippet in some TypeScript code:
const \(s=\operatorname{sum}(\mathrm{L})\);
return \(2 * \mathrm{~s} ; / /=\operatorname{sum}(\) twice (L))
```

```
func sum(nil) }\quad:=
```

func sum(nil) }\quad:=
sum(cons(a,L)) := a+\operatorname{sum}(L) for any a:\mathbb{Z}\mathrm{ and L:List}
sum(cons(a,L)) := a+\operatorname{sum}(L) for any a:\mathbb{Z}\mathrm{ and L:List}
func twice(nil) := nil
func twice(nil) := nil
twice(cons(a,L)) := cons(2a, twice(L)) for any a:\mathbb{Z}\mathrm{ and L: List}

```
    twice(cons(a,L)) := cons(2a, twice(L)) for any a:\mathbb{Z}\mathrm{ and L: List}
```

This code claims to calculate the answer sum $(\operatorname{twice}(L))$, but it actually returns 2 sum (L). Prove this code is correct by showing that sum $($ twice $(L))=2 \operatorname{sum}(L)$ holds for any list L by structural induction.

Question?

You see following snippet in some TypeScript code:

```
const s = sum(L);
return 2 * s; // = sum(twice(L))
```

```
func sum(nil) := 0
    sum(cons(a,L)) := a+\operatorname{sum}(L) for any a:\mathbb{Z}\mathrm{ and L: List}
func twice(nil) := nil
    twice(cons(a,L)) := cons(2a,twice(L)) for any a:\mathbb{Z}\mathrm{ and L:List}
```

This code claims to calculate the answer sum (twice (L)), but it actually returns $2 \operatorname{sum}(L)$. Prove this code is correct by showing that sum $($ twice $(L))=2 \operatorname{sum}(L)$ holds for any list L by structural induction.
(1) Define $\mathrm{P}(\mathrm{L})$ to be claim that sum(twice(L)) $=2$ sum(L). We will prove the claim by structural induction
(2) Base Case (nil):
sum(twice(nil))

$$
\begin{array}{ll}
=\operatorname{sum}(\text { nill }) & \text { Def of twice } \\
=0=2^{*} 0 & \text { Algebra } \\
=2^{*} \text { sum(nil) } & \text { Def of sum }
\end{array}
$$

(3) Inductive Hypothesis. Suppose that $P(L)$ holds for a list L. (i.e. suppose that sum(twice(L)) = 2sum(L)

Question 2 continued...

You see following snippet in some TypeScript code:

```
const s = sum(L);
return 2 * s; // = sum(twice(L))
```

```
func sum(nil) }:=
    sum(cons(a,L)) := a+\operatorname{sum}(L) for any a:\mathbb{Z}\mathrm{ and L}L\mathrm{ : List}
func twice(nil) := nil
    twice(cons(a,L)) := cons(2a,twice(L)) for any a:\mathbb{Z}}\mathrm{ and L}L\mathrm{ : List
```

This code claims to calculate the answer sum(twice (L)), but it actually returns $2 \operatorname{sum}(L)$. Prove this code is correct by showing that sum $($ twice $(L))=2 \operatorname{sum}(L)$ holds for any list L by structural induction.
(4) Inductive Step. Show $\mathrm{P}($ cons(a, L)) for any integer a

Let a be any integer. Then we can calculate,
sum(twice(cons(a, L))
$=\operatorname{sum}(\operatorname{cons}(2 \mathrm{a}$, twice(L))) Def of twice
= 2a + sum(twice(L)) Def of sum
$=2 \mathrm{a}+2 \operatorname{sum}(\mathrm{~L}) \quad$ I.H.
$=2(a+\operatorname{sum}(\mathrm{L}))$
= 2sum(cons(a, L)) Def of sum
(5) Conclusion. $P(L)$ holds for any L by structural induction

Question 3

```
func twice-evens(nil) := nil
    twice-evens(cons(a,L)) := cons(2a, twice-odds}(L))\quad\mathrm{ for any }a:\mathbb{Z}\mathrm{ and L}L\mathrm{ : List
func twice-odds(nil) := nil
    twice-odds(cons(a,L)) := cons(a, twice-evens}(L))\quad\mathrm{ for any }a:\mathbb{Z}\mathrm{ and L}L\mathrm{ : List
    sum(twice-evens(L)) + sum(twice-odds}(L))=3\operatorname{sum}(L
```

Use structural induction to prove that this holds for any list L.

Question 3

```
func twice-evens(nil) := nil
    twice-evens(cons(a,L)) := cons(2a,twice-odds (L)) for any a:\mathbb{Z}}\mathrm{ and L}L\mathrm{ : List
func twice-odds(nil) := nil
    twice-odds(cons}(a,L))\quad:=\operatorname{cons}(a,\mathrm{ twice-evens}(L))\quad\mathrm{ for any }a:\mathbb{Z}\mathrm{ and L}L\mathrm{ : List
\[
\operatorname{sum}(\operatorname{twice-evens}(L))+\operatorname{sum}(\operatorname{twice}-o d d s(L))=3 \operatorname{sum}(L)
\]
```

Use structural induction to prove that this holds for any list L.
(1) Let $P(L)$ be the claim above. We will prove this claim by structural induction
(2) Base Case (nil)

$$
\begin{array}{rlrl}
\text { sum(twice-evens(nil)) }+ \text { sum(twice-odds(nil)) }=\text { 3sum(nil) } \\
& =\text { sum(nil) }+ \text { sum(twice-odds(nil)) } & & \text { Def of twice-evens } \\
& =\operatorname{sum}(\text { nil) }+ \text { sum(nil) } & & \text { Def of twice-odds } \\
& =0=3^{*} 0 & & \text { Algebra } \\
& =3 \text { sum(nil) } & & \text { Def of sum }
\end{array}
$$

(3) Inductive Hypothesis. Suppose $P(L)$ holds for a list L

Question 3 continued...

```
func twice-evens(nil) := nil
    twice-evens(cons(a,L)) := cons(2a, twice-odds (L)) for any a:\mathbb{Z}}\mathrm{ and }L\mathrm{ : List
func twice-odds(nil) := nil
    twice-odds(cons}(a,L))\quad:=\operatorname{cons}(a,\mathrm{ twice-evens }(L))\quad\mathrm{ for any }a:\mathbb{Z}\mathrm{ and L}:\mathrm{ List
```

(4) Inductive Step. Show $\mathrm{P}(\operatorname{cons}(\mathrm{a}, \mathrm{L}))$ for any integer a

Let a be any integer. Then we can calculate
sum(twice-evens(cons(a, L))) + sum(twice-odds(cons(a, L)))

$$
\begin{aligned}
& =\text { sum(cons(2a, twice-odds(L))) } \\
& \quad+\text { sum(twice-odds(cons(a, L))) Def of twice-evens }
\end{aligned}
$$

$$
=2 \mathrm{a}+\text { sum(twice-odds(L)) }
$$

+ sum(twice-odds(cons(a, L))) Def of sum

$$
=2 \mathrm{a}+\text { sum(twice-odds(L)) }
$$

+ sum(cons(a, twice-evens(L))) Def of twice-odds
= 2a + sum(twice-odds(L))
+ a + sum(twice-evens(L))

Def of sum
$=3 \mathrm{a}+$ sum(twice-odds(L)) + sum(twice-evens))
$=3 a+3 s u m(L)$
By I.H.
$=3(\mathrm{a}+\operatorname{sum}(\mathrm{L}))$
$=3$ sum(cons(a, L))
Def of sum
(5) Conclusion. $\mathrm{P}(\mathrm{L})$ holds for any list L by structural induction

Question 4

$$
\begin{array}{lll}
\text { func } \operatorname{swap}(\text { nil }) & :=\text { nil } & \\
\operatorname{swap}(\operatorname{cons}(a, \text { nil })) & :=\operatorname{cons}(a, \text { nil }) & \text { for any } a: \mathbb{Z} \\
\operatorname{swap}(\operatorname{cons}(a, \operatorname{cons}(b, L))) & :=\operatorname{cons}(b, \operatorname{cons}(a, \operatorname{swap}(L))) & \text { for any } a, b: \mathbb{Z} \text { and } L: \text { List }
\end{array}
$$

Prove by cases that $\operatorname{swap}(\operatorname{cons}(a, L)) \neq$ nil for any integer a and list L.

Question 4

$$
\begin{array}{lll}
\text { func } \operatorname{swap}(\text { nil }) & :=\text { nil } & \\
\operatorname{swap}(\operatorname{cons}(a, \text { nil }) & :=\operatorname{cons}(a, \text { nil }) & \text { for any } a: \mathbb{Z} \\
\operatorname{swap}(\operatorname{cons}(a, \operatorname{cons}(b, L))) & :=\operatorname{cons}(b, \operatorname{cons}(a, \operatorname{swap}(L))) & \text { for any } a, b: \mathbb{Z} \text { and } L: \text { List }
\end{array}
$$

Prove by cases that $\operatorname{swap}(\operatorname{cons}(a, L)) \neq$ nil for any integer a and list L.
Let a be any integer and L be any list. We argue by cases on L
First, suppose that $L=$ nil

$$
\begin{aligned}
& \text { swap(cons(a, L)) } \\
& \text { = swap(cons(a, nil)) } \\
& \text { = cons(a, nil) Def of swap } \\
& \neq \text { nil }
\end{aligned}
$$

Next, suppose that $L \neq$ nil. That means $L=\operatorname{cons}(b, R)$ for some b: Z and R: List swap(cons(a, L))

$$
\begin{aligned}
& =\operatorname{swap}(\operatorname{cons}(a, \operatorname{cons}(b, R))) \\
& =\operatorname{cons}(b, \operatorname{cons}(a, \operatorname{swap}(R))) \quad \text { Def of swap } \\
& \neq \text { nil }
\end{aligned}
$$

Attendance

Please fill out the Google Form at the following link:

