CSE 331
Software Design & Implementation

Spring 2023
Section 3 — Functional Programming |l

UW CSE 331 Spring 2023

Administrivia

« HWS3 released later today
— Due Wednesday (4/19) @ 11:00pm
« Google Form for Student GitLab Repo (here) — Optional

— If you would like to have a dedicated student repo for this
course to maintain version control

https://docs.google.com/forms/d/e/1FAIpQLScZI2G6lBSzBYIZvlrKSm7M9zVruzkmFUyp4agdqN5u0AUMZA/viewform

Structural Induction — Review

* Let P(S) be the claim
 To Prove P(S) holds for any list S, we need to prove two
implications:
— Base Case: prove P(nil)
« Use any know facts and definitions
— Inductive Step: prove P(cons(x, L)) forany x : Z, L : List
 Direct proof
« Use know facts and definition and Inductive Hypothesis
— Inductive Hypothesis: assume P(L) is true
» Use this in the inductive step ONLY

« Assuming we know P(S), if we prove P(cons(x, L)), we then
prove recursively that P(S) holds for any List

Defining Function By Cases — Review

« Sometimes we want to define functions with other cases
— E.g. define f(n) wheren : Z

func f(n) :=2n+1 ifn=>0
f(n) :=0 ifn<O0

— To use the definition f(m), we need to know if m > 0 or not
— Because of this structure, the proof needs to look different

Proof By Cases — Review

* New code structure means we need new proof structures
« Can split a proof into cases:

— E.g. a=True and a = False

— E.g.n>=0andn<0

— These cases needs to be exhaustive

* Ex func f(n) := 2n + 1 ifn>0
f(n):=0 ifn<O0

Prove that f(n) = n for any n: Z

Casen = 0: _ _
Since these 2 cases are exhaustive, f(n) >= n holds
f(n)=..2n in general
Casen <0:
f(n) =0 def of f (since n < 0)

>n sincen<0

Question 1

We are asked to write a function pseudo-sort that takes a list as an argument, “looks at the first two numbers,
moves the smaller of those to the front, and then continues on the rest of the list after the first element".

(a) Write a formal definition for this English definition?

(b) Show by example that pseudo-sort does not actually sort the list.

Question 1

We are asked to write a function pseudo-sort that takes a list as an argument, “looks at the first two numbers,
moves the smaller of those to the front, and then continues on the rest of the list after the first element".

(a) Write a formal definition for this English definition?

func pseudo-sort(nil) = nil
pseudo-sort(cons(a, nil)) := cons(a, nil) foranya:Z
pseudo-sort(cons(a, cons(b, L))) .= cons(a, pseudo-sort(cons(b, L))) B
pseudo-sort(cons(a, cons(b, L))) .= cons(b, pseudo-sort(cons(a, L))) C

Where B is “for any a, b: Z and L: List with a <= b” and C is “for any a, b: Z and L: List
with a > b”

(b) Show by example that pseudo-sort does not actually sort the list.

Question 1

We are asked to write a function pseudo-sort that takes a list as an argument, “looks at the first two numbers,
moves the smaller of those to the front, and then continues on the rest of the list after the first element".

(a) Write a formal definition for this English definition?

func pseudo-sort(nil) = nil
pseudo-sort(cons(a, nil)) := cons(a, nil) foranya:Z
pseudo-sort(cons(a, cons(b, L))) .= cons(a, pseudo-sort(cons(b, L))) B
pseudo-sort(cons(a, cons(b, L))) .= cons(b, pseudo-sort(cons(a, L))) C

Where B is “for any a, b: Z and L: List with a <= b” and C is “for any a, b: Z and L: List
with a > b”

(b) Show by example that pseudo-sort does not actually sort the list.

We can see that:
func pseudo-sort(cons(2, cons(3, cons(1, nil))))

= cons(2, pseudo-sort(cons(3, cons(1, nil)))) Def of pseudo-sort
= cons(2, cons(1, pseudo-sort(cons(3, nil)))) Def of pseudo-sort
= cons(2, cons(1, cons(3, nil))) Def of pseudo-sort

However, the sorted list is cons(1, cons(2, cons(3, nil)))

Question 2

You see following snippet in some TypeScript code:

func sum(nil) =0

const s = sum(L) sum(cons(a, L)) = a+sum(L) foranya:Z and L : List
func twice(nil) = nil

return 2 * s; // = sum(twice(L)) twice(cons(a, L)) := cons(2a,twice(L)) foranya:Z and L : List

This code claims to calculate the answer sum(twice(L)), but it actually returns 2sum(L). Prove this code is
correct by showing that sum(twice(L)) = 2sum(L) holds for any list L by structural induction.

Question 2

You see following snippet in some TypeScript code:

func sum(nil) =0
const s = sum(L): sum(cons(a, L)) := a+sum(L) foranya:Z and L : List
ce func twice(nil) = nil
return 2 * s; // = sum(twice(L)) twice(cons(a, L)) := cons(2a,twice(L)) forany a:Z and L : List

This code claims to calculate the answer sum(twice(L)), but it actually returns 2sum(L). Prove this code is
correct by showing that sum(twice(L)) = 2sum(L) holds for any list L by structural induction.

(1) Define P(L) to be claim that sum(twice(L)) = 2sum(L). We will prove the claim by
structural induction
(2) Base Case (nil):

sum(twice(nil))

= sum(nill) Def of twice
=0=2%0 Algebra
= 2 * sum(nil) Def of sum

(3) Inductive Hypothesis. Suppose that P(L) holds for a list L. (i.e. suppose that
sum(twice(L)) = 2sum(L)

Question 2 continued...

You see following snippet in some TypeScript code: [¢, sum(nil) — 0
const s = sun(L); sum(cons(a, L)) := a+sum(L) foranya:Z and L : List

func twice(nil) = nil
return 2 * s; // = sum(twice(L)) twice(cons(a, L)) := cons(2a,twice(L)) forany a:Z and L : List

This code claims to calculate the answer sum(twice(L)), but it actually returns 2sum(L). Prove this code is
correct by showing that sum(twice(L)) = 2sum(L) holds for any list L by structural induction.

(4) Inductive Step. Show P(cons(a, L)) for any integer a
Let a be any integer. Then we can calculate,
sum(twice(cons(a, L))

= sum(cons(2a, twice(L))) Def of twice
= 2a + sum(twice(L)) Def of sum
=2a+ 2sum(L) I.H.

= 2(a + sum(L))

= 2sum(cons(a, L)) Def of sum

(5) Conclusion. P(L) holds for any L by structural induction

Question 3

func twice-evens(nil) = nil

twice-evens(cons(a, L)) := cons(2a,twice-odds(L)) for any a:Z and L : List
func twice-odds(nil) = nil

twice-odds(cons(a, L)) := cons(a,twice-evens(L)) for any a:Z and L : List

sum(twice-evens(L)) + sum(twice-odds(L)) = 3sum(L)

Use structural induction to prove that this holds for any list L.

Question 3

func twice-evens(nil) = nil

twice-evens(cons(a, L)) := cons(2a,twice-odds(L)) for any a:Z and L : List
func twice-odds(nil) = nil

twice-odds(cons(a, L)) := cons(a,twice-evens(L)) for any a:Z and L : List

sum(twice-evens(L)) + sum(twice-odds(L)) = 3sum(L)

Use structural induction to prove that this holds for any list L.

(1) Let P(L) be the claim above. We will prove this claim by structural induction
(2) Base Case (nil)
sum(twice-evens(nil)) + sum(twice-odds(nil)) = 3sum(nil)

= sum(nil) + sum(twice-odds(nil)) Def of twice-evens
= sum(nil) + sum(nil) Def of twice-odds
=0=3*0 Algebra

= 3sum(nil) Def of sum

(3) Inductive Hypothesis. Suppose P(L) holds for a list L

Question 3 continued...

func twice-evens(nil) = nil
cons(2a, twice-odds(L)) for any a : Z and L : List

func twice-odds(nil) = nil

twice-evens(cons(a, L)) :

twice-odds(cons(a, L)) := cons(a,twice-evens(L)) for any a:Z and L : List

(4) Inductive Step. Show P(cons(a, L)) for any integer a
Let a be any integer. Then we can calculate
sum(twice-evens(cons(a, L))) + sum(twice-odds(cons(a, L)))
= sum(cons(2a, twice-odds(L)))

+ sum(twice-odds(cons(a, L))) Def of twice-evens
= 2a + sum(twice-odds(L))
+ sum(twice-odds(cons(a, L))) Def of sum
= 2a + sum(twice-odds(L))
+ sum(cons(a, twice-evens(L))) Def of twice-odds
= 2a + sum(twice-odds(L))
+ a + sum(twice-evens(L)) Def of sum
= 3a + sum(twice-odds(L)) + sum(twice-evens))
= 3a + 3sum(L) By I.H.
= 3(a + sum(L))
= 3sum(cons(a, L)) Def of sum

(5) Conclusion. P(L) holds for any list L by structural induction

Question 4

func swap(nil) = nil
swap(cons(a, nil)) := cons(a, nil) for any a : Z
swap(cons(a, cons(b, L.))) := cons(b,cons(a,swap(L))) forany a,b:Z and L : List

Prove by cases that swap(cons(a, L)) # nil for any integer a and list L.

Question 4

func swap(nil) = nil
swap(cons(a, nil)) := cons(a, nil) for any a : Z
swap(cons(a, cons(b, L.))) := cons(b,cons(a,swap(L))) forany a,b:Z and L : List

Prove by cases that swap(cons(a, L)) # nil for any integer a and list L.

Let a be any integer and L be any list. We argue by cases on L
First, suppose that L = nil
swap(cons(a, L))
= swap(cons(a, nil))
= cons(a, nil) Def of swap
nil
Next, suppose that L # nil. That means L = cons(b, R) for some b: Z and R: List
swap(cons(a, L))
= swap(cons(a, cons(b, R)))
= cons(b, cons(a, swap(R))) Def of swap
nil

Attendance

Please fill out the Google Form at the following link:

	Slide 1: CSE 331 Software Design & Implementation
	Slide 2: Administrivia
	Slide 3: Structural Induction – Review
	Slide 4: Defining Function By Cases – Review
	Slide 5: Proof By Cases – Review
	Slide 6: Question 1
	Slide 7: Question 1
	Slide 8: Question 1
	Slide 9: Question 2
	Slide 10: Question 2
	Slide 11: Question 2 continued…
	Slide 12: Question 3
	Slide 13: Question 3
	Slide 14: Question 3 continued…
	Slide 15: Question 4
	Slide 16: Question 4
	Slide 17: Attendance

