
UW CSE 331 Spring 2023

CSE 331

Software Design & Implementation

Spring 2023

Section 3 – Functional Programming II

1



Administrivia

• HW3 released later today

– Due Wednesday (4/19) @ 11:00pm

• Google Form for Student GitLab Repo (here) – Optional

– If you would like to have a dedicated student repo for this 

course to maintain version control

https://docs.google.com/forms/d/e/1FAIpQLScZI2G6lBSzBYIZvlrKSm7M9zVruzkmFUyp4agdqN5u0AUMZA/viewform


Structural Induction – Review

• Let P(S) be the claim 

• To Prove P(S) holds for any list S, we need to prove two 

implications:

– Base Case: prove P(nil)

• Use any know facts and definitions

– Inductive Step: prove P(cons(x, L)) for any x : Z, L : List

• Direct proof

• Use know facts and definition and Inductive Hypothesis

– Inductive Hypothesis: assume P(L) is true

• Use this in the inductive step ONLY

• Assuming we know P(S), if we prove P(cons(x, L)), we then 

prove recursively that P(S) holds for any List



Defining Function By Cases – Review

• Sometimes we want to define functions with other cases

– E.g. define f(n) where n : Z

– To use the definition f(m), we need to know if m > 0 or not

– Because of this structure, the proof needs to look different



Proof By Cases – Review

• New code structure means we need new proof structures

• Can split a proof into cases:

– E.g. a = True and a = False

– E.g. n >= 0 and n < 0

– These cases needs to be exhaustive

• Ex:

Since these 2 cases are exhaustive, f(n) >= n holds 

in general



Question 1

(a) Write a formal definition for this English definition?

(b) Show by example that pseudo-sort does not actually sort the list.



Question 1

(a) Write a formal definition for this English definition?

func pseudo-sort(nil) := nil

pseudo-sort(cons(a, nil)) := cons(a, nil) for any a : Z

pseudo-sort(cons(a, cons(b, L))) := cons(a, pseudo-sort(cons(b, L)))     B

pseudo-sort(cons(a, cons(b, L))) := cons(b, pseudo-sort(cons(a, L)))     C

Where B is “for any a, b: Z and L: List with a <= b” and C is “for any a, b: Z and L: List 

with a > b”

(b) Show by example that pseudo-sort does not actually sort the list.



Question 1

(a) Write a formal definition for this English definition?

func pseudo-sort(nil) := nil

pseudo-sort(cons(a, nil)) := cons(a, nil) for any a : Z

pseudo-sort(cons(a, cons(b, L))) := cons(a, pseudo-sort(cons(b, L)))     B

pseudo-sort(cons(a, cons(b, L))) := cons(b, pseudo-sort(cons(a, L)))     C

Where B is “for any a, b: Z and L: List with a <= b” and C is “for any a, b: Z and L: List 

with a > b”

(b) Show by example that pseudo-sort does not actually sort the list.

We can see that: 

func pseudo-sort(cons(2, cons(3, cons(1, nil))))

= cons(2, pseudo-sort(cons(3, cons(1, nil)))) Def of pseudo-sort

= cons(2, cons(1, pseudo-sort(cons(3, nil)))) Def of pseudo-sort

= cons(2, cons(1, cons(3, nil))) Def of pseudo-sort

However, the sorted list is cons(1, cons(2, cons(3, nil)))



Question 2



Question 2

(1) Define P(L) to be claim that sum(twice(L)) = 2sum(L). We will prove the claim by 

structural induction

(2) Base Case (nil):

sum(twice(nil))

= sum(nill) Def of twice

= 0 = 2*0 Algebra

= 2 * sum(nil) Def of sum

(3) Inductive Hypothesis. Suppose that P(L) holds for a list L. (i.e. suppose that 

sum(twice(L)) = 2sum(L)



Question 2 continued…

(4) Inductive Step. Show P(cons(a, L)) for any integer a

Let a be any integer. Then we can calculate,

sum(twice(cons(a, L))

= sum(cons(2a, twice(L))) Def of twice

= 2a + sum(twice(L)) Def of sum

= 2a + 2sum(L) I.H.

= 2(a + sum(L))

= 2sum(cons(a, L)) Def of sum

(5) Conclusion. P(L) holds for any L by structural induction 



Question 3



Question 3

(1) Let P(L) be the claim above. We will prove this claim by structural induction

(2) Base Case (nil)

sum(twice-evens(nil)) + sum(twice-odds(nil)) = 3sum(nil)

= sum(nil) + sum(twice-odds(nil)) Def of twice-evens

= sum(nil) + sum(nil) Def of twice-odds

= 0 = 3 * 0 Algebra

= 3sum(nil) Def of sum

(3) Inductive Hypothesis. Suppose P(L) holds for a list L



Question 3 continued…

(4) Inductive Step. Show P(cons(a, L)) for any integer a

Let a be any integer. Then we can calculate

sum(twice-evens(cons(a, L))) + sum(twice-odds(cons(a, L)))

= sum(cons(2a, twice-odds(L))) 

+ sum(twice-odds(cons(a, L))) Def of twice-evens

= 2a + sum(twice-odds(L)) 

+ sum(twice-odds(cons(a, L))) Def of sum

= 2a + sum(twice-odds(L)) 

+ sum(cons(a, twice-evens(L))) Def of twice-odds

= 2a + sum(twice-odds(L)) 

+ a + sum(twice-evens(L)) Def of sum

= 3a + sum(twice-odds(L)) + sum(twice-evens))

= 3a + 3sum(L) By I.H.

= 3(a + sum(L))

= 3sum(cons(a, L)) Def of sum

(5) Conclusion. P(L) holds for any list L by structural induction



Question 4



Question 4

Let a be any integer and L be any list. We argue by cases on L

First, suppose that L = nil

swap(cons(a, L))

= swap(cons(a, nil))

= cons(a, nil) Def of swap

≠ nil

Next, suppose that L ≠ nil. That means L = cons(b, R) for some b: Z and R: List

swap(cons(a, L))

= swap(cons(a, cons(b, R)))

= cons(b, cons(a, swap(R))) Def of swap

≠ nil



Attendance

Please fill out the Google Form at the following link:


	Slide 1: CSE 331 Software Design & Implementation
	Slide 2: Administrivia
	Slide 3: Structural Induction – Review
	Slide 4: Defining Function By Cases – Review
	Slide 5: Proof By Cases – Review
	Slide 6: Question 1
	Slide 7: Question 1
	Slide 8: Question 1
	Slide 9: Question 2
	Slide 10: Question 2
	Slide 11: Question 2 continued…
	Slide 12: Question 3
	Slide 13: Question 3
	Slide 14: Question 3 continued…
	Slide 15: Question 4
	Slide 16: Question 4
	Slide 17: Attendance

