CSE 331
Software Design & Implementation

Spring 2023
Section 2 — Functional Programming |

UW CSE 331 Spring 2023

Inductive Data Types — Review

» Describe a set by ways of creating its element
— Each is a “constructor”
typeT:= A(x:Z) | B(x:Z, y:T)
— Second constructor is recursive
— Can have any number of parameters

EX: base case recursive case

N

type List := nil | cons(x:Z, L: List)
* Inductive definition of lists of integers

nil

|

~|
cons(3, nil) =~ [3] tati
array notation
cons(2, cons(3, nil)) ~ (2, 3] y
cons(1, cons(2, cons(3, nil))) ~ (1, 2, 3]

Structural Recursion — Review

* Inductive types: builds new values from existing ones
« Structural recursion: recurse on smaller parts

— Call on nrecurses on n.val

— Guarantees no infinite loops

— Note: Only kind of recursion used for this class

EX: type List:= nil | cons(hd: Z, tl: List)

* Mathematical definition of length

func len(nil) =0
len(cons(x, L)) := 1+ len(L) foranyx € Z
and any L € List

— any list is either nil or cons(x, L) for some x and L
— so0 one of these two rules always applies

Testing — Strict vs Deep

describe(‘example’, function() {
it(‘testBar’ function() {
.../* assert statements */
})
})

Assertion Failure Condition

assert.strictEqual(expected, actual) expected I== actual

assert.deepEqual(expected, actual) If properties of child objects are not
equal

const vl : Vector = {x: 1, y : 1}

const v2 : Vector = {x: 1, y: 1} ThlS Wl” paSS
it('add_vector_deep', function() {

assert.deepEqual(add_vector(vl, v2), {x: 2, y: 2})
1)

it('add_vector_strict', function() {
assert.strictEqual(add_vector(vi, v2), {x: 2, y: 2})

— This will fail
)

Testing — Documenting

« Make sure to document which subdomain/domain you are testing
for each test

Ex: / Name of class being tested

describe(‘example’, function() {

/ Name of function being tested

it(“testBar’ function() {
/* comment describing subdomain being tested */

assert...

1)
})

Question 1

o

We are asked to write a function “twice” that takes a list as an argument and “returns a list of the same length
but with every number in the list multiplied by 2"

(a) This is an English definition of the problem, so our first step is to formalize it. Let's start by writing this
out in more detail. Fill in the blanks showing the result of applying twice to lists of different lengths.

nil

cons(a, nil)

cons(a, cons(b, nil))

cons(a, cons(b, cons(e, nil)))

(b) The previous list of examples is not a formal definition. It does not tell us, for example, what twice does
to a list of length 4. More generally, any time we see “...", the definition is probably not formal.

Write a formal definition of twice using recursion.

(c) If we translated this into TypeScript code, what tests (if any) should we include to make sure that we did
it correctly?

Question 1

o

We are asked to write a function “twice” that takes a list as an argument and “returns a list of the same length
but with every number in the list multiplied by 2"

(a) This is an English definition of the problem, so our first step is to formalize it. Let's start by writing this
out in more detail. Fill in the blanks showing the result of applying twice to lists of different lengths.

nil
cons(2a, nil)
cons(2a, cons(2b,nil))
cons(2a, cons(2b,cons(2c, nil)))

nil

cons(a, nil)

cons(a, cons(b, nil))

cons(a, cons(b, cons(e, nil)))

(b) The previous list of examples is not a formal definition. It does not tell us, for example, what twice does
to a list of length 4. More generally, any time we see “...", the definition is probably not formal.

Write a formal definition of twice using recursion.

(c) If we translated this into TypeScript code, what tests (if any) should we include to make sure that we did
it correctly?

Question 1

o

We are asked to write a function “twice” that takes a list as an argument and “returns a list of the same length
but with every number in the list multiplied by 2"

(a) This is an English definition of the problem, so our first step is to formalize it. Let's start by writing this
out in more detail. Fill in the blanks showing the result of applying twice to lists of different lengths.

nil
cons(2a, nil)
cons(2a, cons(2b,nil))
cons(2a, cons(2b,cons(2c, nil)))

nil

cons(a, nil)

cons(a, cons(b, nil))

cons(a, cons(b, cons(e, nil)))

(b) The previous list of examples is not a formal definition. It does not tell us, for example, what twice does
to a list of length 4. More generally, any time we see “...", the definition is probably not formal.

Write a formal definition of twice using recursion.
func twice(nil) := nil
twice(cons(a, L)) := cons(2a, twice(L)) forany a : Z and L : List

(c) If we translated this into TypeScript code, what tests (if any) should we include to make sure that we did
it correctly?

Question 1

o

We are asked to write a function “twice” that takes a list as an argument and “returns a list of the same length
but with every number in the list multiplied by 2"

(a) This is an English definition of the problem, so our first step is to formalize it. Let's start by writing this
out in more detail. Fill in the blanks showing the result of applying twice to lists of different lengths.

nil
cons(2a, nil)
cons(2a, cons(2b,nil))
cons(2a, cons(2b,cons(2c, nil)))

nil

cons(a, nil)

cons(a, cons(b, nil))

cons(a, cons(b, cons(e, nil)))

(b) The previous list of examples is not a formal definition. It does not tell us, for example, what twice does
to a list of length 4. More generally, any time we see “...", the definition is probably not formal.

Write a formal definition of twice using recursion.
func twice(nil) := nil
twice(cons(a, L)) := cons(2a, twice(L)) forany a : Z and L : List

(c) If we translated this into TypeScript code, what tests (if any) should we include to make sure that we did
it correctly?

We should apply 0-1-many heuristic (ex: test length of 0, 1, 3

Question 2

func twice(nil) = nil
cons(2a,twice(L)) for any a:Z and L : List

twice(cons(a, L))

(a) Using the fact that L = cons(1, cons(2, nil)), prove by calculation that twice(L) = R, i.e., that

twice(L) = cons(2, cons(4, nil))

Question 2

func twice(nil) = nil
cons(2a,twice(L)) for any a:Z and L : List

twice(cons(a, L))

(a) Using the fact that L = cons(1, cons(2, nil)), prove by calculation that twice(L) = R, i.e., that

twice(L) = cons(2, cons(4, nil))

twice(L)
= twice(cons(1, cons(2, nil))) Def of L
= cons(2, twice(cons(2, nil))) Def of twice
= cons(2, cons(4, twice(nil))) Def of twice

= cons(2, cons(4, nil)) Def of twice

Question 2

func twice(nil) = nil
cons(2a,twice(L)) for any a:Z and L : List

twice(cons(a, L))

twice(L) = cons(2, cons(4, nil))

(b) Using the facts that L = cons(1, cons(2, nil)) and R = cons(2, cons(4, nil)), prove by calculation that the
code above returns the correct value, i.e., that

twice(cons(0, L)) = cons(0, R)

Feel free to cite part (a) in your calculation.

Question 2

func twice(nil) = nil
twice(cons(a, L)) := cons(2a,twice(L)) forany a:Z and L : List

twice(L) = cons(2, cons(4, nil))

(b) Using the facts that L = cons(1, cons(2, nil)) and R = cons(2, cons(4, nil)), prove by calculation that the
code above returns the correct value, i.e., that

twice(cons(0, L)) = cons(0, R)

Feel free to cite part (a) in your calculation.

twice(cons(0, L))
= cons(0, twice(L)) Def of twice
= cons(0, cons(2, cons(4, nil))) Part(a)
= cons(0, R) Def of R

Question 3

We are asked to write a function that takes a list as an argument and “returns a list of the same length but
with every other number in the list, starting with the first number, multiplied by 2"

The first number in the list is at index 0, which is even; the second number in the list is at index 1, which
is odd; the third number in the list is at index 2, which is even; and so on. Hence, we will call this function
twice-evens because it multiples the numbers at even indexes by two and leaves those at odd indexes unchanged.

(a) The definition of the problem was in English, so our first step is to formalize it. Let's start by writing this
out in more detail. Fill in the blanks showing the result of applying twice-even to lists of different lengths.

nil

cons(a, nil)

cons(a, cons(b, nil))

cons(a, cons(b, cons(c, nil)))

Question 3

We are asked to write a function that takes a list as an argument and “returns a list of the same length but
with every other number in the list, starting with the first number, multiplied by 2"

The first number in the list is at index 0, which is even; the second number in the list is at index 1, which
is odd; the third number in the list is at index 2, which is even; and so on. Hence, we will call this function
twice-evens because it multiples the numbers at even indexes by two and leaves those at odd indexes unchanged.

(a) The definition of the problem was in English, so our first step is to formalize it. Let's start by writing this
out in more detail. Fill in the blanks showing the result of applying twice-even to lists of different lengths.

nil

nil

cons(2a,nil)

cons(a, nil)

cons(2a,cons(b,nil))

cons(a, cons(b, nil))

cons(2a,cons(b,cons(2c,nil)))

cons(a, cons(b, cons(c, nil)))

Question 3

(b) The previous list of examples is not a formal definition (because of the “...").

Write a formal definition of this function, twice-evens, using recursion. In order to do so, you may
need to define more than one function!

(c) If we translated this into TypeScript code, what tests (if any) should we include to make sure that we did
it correctly?

Question 3

(b) The previous list of examples is not a formal definition (because of the “...").

Write a formal definition of this function, twice-evens, using recursion. In order to do so, you may
need to define more than one function!

func twice-evens(nil) = nil

twice-evens(cons(a, L) .= cons(2a, twice-odds(L)) for any a
:Zand L : List
func twice-odds(nil) = nil

twice-odds(cons(a, L)) .= cons(a, twice-evens(L)) for any
a: Zand L : List

(c) If we translated this into TypeScript code, what tests (if any) should we include to make sure that we did
it correctly?

Question 3

(b) The previous list of examples is not a formal definition (because of the “...").

Write a formal definition of this function, twice-evens, using recursion. In order to do so, you may
need to define more than one function!

func twice-evens(nil) = nil

twice-evens(cons(a, L) .= cons(2a, twice-odds(L)) for any a
:Zand L : List
func twice-odds(nil) = nil

twice-odds(cons(a, L)) .= cons(a, twice-evens(L)) for any
a: Zand L : List

(c) If we translated this into TypeScript code, what tests (if any) should we include to make sure that we did
it correctly?

For twice-evens, we need to test nil, a call to twice-odds base
case, and a recursive call of twice-evens. This gives us 5 tests for
twice-evens. We need to do the same for twice-odds, which gives

a total of 10 tests.

Question 4

func twice-evens(nil) = nil

twice-evens(cons(a, L)) := cons(2a,twice-odds(L)) for any a:Z and L : List

func twice-odds(nil) = nil
twice-odds(cons(a. L)) := cons(a.twice-evens(L)) for any a : Z and L : List
func len(nil) = 0
len(cons(a, L)) := 1+len(L) foranya:Zand L : List

(a) Let a and b be any integers. Prove by calculation that

len(twice-evens(cons(a, cons(b, L)))) = 2 + len(twice-evens(L))

Question 4

func twice-evens(nil) = nil

twice-evens(cons(a, L)) := cons(2a,twice-odds(L)) for any a:Z and L : List

func twice-odds(nil) = nil

twice-odds(cons(a. L)) := cons(a.twice-evens(L)) for any a : Z and L : List
func len(nil) = 0

len(cons(a, L)) := 1+len(L) foranya:Zand L : List

(a) Let a and b be any integers. Prove by calculation that
len(twice-evens(cons(a, cons(b, L)))) = 2 + len(twice-evens(L))

len(twice-evens(cons(a, cons(b, L))))
= len(cons(2a, twice-odds(cons(b, L)))) Def of twice-evens

= len(cons(2a, cons(b, twice-evens(L)))) Def of twice-odds
=1 + len(cons(b, twice-evens(L))) Def of len

=1+ 1+ len(twice-evens(L)) Def of len

= 2 + len(twice-evens(L))

Question 4

Given this code:

return 2 + len(twice evens(L)); // = len(twice-evens(cons(3, cons(4, L))))

And the fact we proved in (a):

len(twice-evens(cons(a, cons(b, L)))) = 2 + len(twice-evens(L))

(b) Explain why this shows that the code is correct.

Question 4

Given this code:

return 2 + len(twice evens(L)); // = len(twice-evens(cons(3, cons(4, L))))

And the fact we proved in (a):

len(twice-evens(cons(a, cons(b, L)))) = 2 + len(twice-evens(L))

(b) Explain why this shows that the code is correct.

Applying part (a) with a = 3 and b=4 gives us a proof that:
len(twice-evens(cons(3, cons(4, L)))) = 2 + len(twice-evens(L))

Attendance

Please fill out the Google Form at the following link:

	Slide 1: CSE 331 Software Design & Implementation
	Slide 2: Inductive Data Types – Review
	Slide 3: Structural Recursion – Review
	Slide 4: Testing – Strict vs Deep
	Slide 5: Testing – Documenting
	Slide 6: Question 1
	Slide 7: Question 1
	Slide 8: Question 1
	Slide 9: Question 1
	Slide 10: Question 2
	Slide 11: Question 2
	Slide 12: Question 2
	Slide 13: Question 2
	Slide 14: Question 3
	Slide 15: Question 3
	Slide 16: Question 3
	Slide 17: Question 3
	Slide 18: Question 3
	Slide 19: Question 4
	Slide 20: Question 4
	Slide 21: Question 4
	Slide 22: Question 4
	Slide 23: Attendance

