CSE 331
Software Design & Implementation

Spring 2023
Section 1 — HW1, Correctness, and Testing

UW CSE 331 Spring 2023

Administrivia

HW1 released today, due next Wednesday (4/5)
No more than one late day per assignment

4 |ate days in total

Section attendance is required

— Please fill out the section attendance form before the end of
section!

— Talk to us if you can’'t make it

If you haven't done the software setup yet, please take a look at the
email sent last night!

Welcome

« Lets all introduce ourselves:
— Name and pronouns
— Year
— What other classes you are taking this quarter
— Something fun you did over spring break

Review — Correctness

* Levels of correctness:
— (-1): We can manually check the output of all possible cases

— (0): Program comes directly from spec. Can no longer test all
possible cases

« Ex: factorial, unit conversion, etc.
— (1): Code that differs from the spec.
— (2): Implementation of spec using imperative programming
language constructs (ex: local variable mutation, for loops)
— (3): Code maintains and mutates heap-allocated data structures

Level Description Testing Tools Reasoning
-1 few configurations | exhaustive
0 from the spec heuristics type checking code reviews
1 functional ' libraries induction proofs
2 imperative ' ' Floyd logic
3 stateful ' ' state invariants

Question 1

(a) Consider the following mathematical function defined on the integers 1, 2, 3, and 4:

If we implement this directly in TypeScript using a switch statement, what level of correctness is required?

(b) Consider the following mathematical function defined on the inputs n and b, where n is 1, 2, 3, or 4 and
b is true or false. It is defined in terms of the function f defined in part (a).

func g(n,T) := f(n)
g(n.F):= f(n)

If we implement this in TypeScript using an if statement (on b), what level of correctness is required?

Question 1

(a) Consider the following mathematical function defined on the integers 1, 2, 3, and 4:

func f(1):=2
f(2):=3
£(3) =4
fl4):=1

If we implement this directly in TypeScript using a switch statement, what level of correctness is required?

This is level -1. There are only 4 valid inputs

(b) Consider the following mathematical function defined on the inputs n and b, where n is 1, 2, 3, or 4 and
b is true or false. It is defined in terms of the function f defined in part (a).

func g(n,T) := f(n)
g(n.F):= f(n)

If we implement this in TypeScript using an if statement (on b), what level of correctness is required?

Question 1

(a) Consider the following mathematical function defined on the integers 1, 2, 3, and 4:

func f(1):=2
f(2):=3
£(3) =4
fl4):=1

If we implement this directly in TypeScript using a switch statement, what level of correctness is required?

This is level -1. There are only 4 valid inputs

(b) Consider the following mathematical function defined on the inputs n and b, where n is 1, 2, 3, or 4 and
b is true or false. It is defined in terms of the function f defined in part (a).

func g(n,T) := f(n)
g(n.F):= f(n)

If we implement this in TypeScript using an if statement (on b), what level of correctness is required?

This is level -1. There are only 8 valid inputs

Question 1

(c) Consider the following mathematical function defined on the inputs n and x, where n is 1, 2, 3, or 4 and
x is any integer. It is defined in terms of the function f defined in part (a).

func h(n,z) := f(n) +x

If we implement this in TypeScript using a single return statement, what level of correctness is required?

(d) Suppose that we implement the function h with the following TypeScript code. (It calls f, which we will
assume is implemented in TypeScript with a simple switch statement.)

function h(n: 1]12|3|4, x: number): number {
let y = f(n);
while (x > 0) {
y=vy+1
x =x - 1;
}

return y;

}

What level of correctness is required now?

Question 1

(c) Consider the following mathematical function defined on the inputs n and x, where n is 1, 2, 3, or 4 and
x is any integer. It is defined in terms of the function f defined in part (a).

func h(n,z) := f(n) +x

If we implement this in TypeScript using a single return statement, what level of correctness is required?

This is level 0. Infinitely many inputs but straight from the specification

(d) Suppose that we implement the function h with the following TypeScript code. (It calls f, which we will
assume is implemented in TypeScript with a simple switch statement.)

function h(n: 1]12|3|4, x: number): number {
let y = f(n);
while (x > 0) {
y=vy+1
x =x - 1;
}

return y;

}

What level of correctness is required now?

Question 1

(c) Consider the following mathematical function defined on the inputs n and x, where n is 1, 2, 3, or 4 and
x is any integer. It is defined in terms of the function f defined in part (a).

func h(n,z) := f(n) +x

If we implement this in TypeScript using a single return statement, what level of correctness is required?

This is level 0. Infinitely many inputs but straight from the specification

(d) Suppose that we implement the function h with the following TypeScript code. (It calls f, which we will
assume is implemented in TypeScript with a simple switch statement.)

function h(n: 1]12|3|4, x: number): number {
let y = f(n);
while (x > 0) {
y=vy+1
x =x - 1;
}

return y;

}

What level of correctness is required now?

This is level 2 since it mutates local variables (x and y are changed)

Coding Setup

Software we will use

Bash: command-line shell (built-in on Mac, see course website to
download Windows version)

* Run echo "${BASH VERSION}” to checkfordownload

Git: version control system (built-in on Mac, Windows version comes
with Bash, above)

Node: executes JavaScript code on the command-line (see link on
course website to install)

* Run node -v tocheckfordownload
NPM: package manager (comes with Node, above)
VS Code or the editor of your choice

Review — Testing

» Opaque-Box Testing
— We look solely at the specs of the code and the description to
determine test cases
— Come up with tests before seeing the actual code
* Clear-Box Testing
— Determines tests by looking at the actual code
— 3 basic elements:
« Straight-Line Calculation
« Conditionals
» Recursive Calls

Review — Testing

« Straight-Line Calculation:

— Simplest type of code. Performs calculation without any
recursive calls or if statements

— Need a minimum of 2 test cases (to ensure that it is not just
returning a constant)

— Ex: return 2 * (x - 1);

Review — Testing

« Conditionals:
— Functional code contains conditionals (if/else)

— Code behaves differently on inputs that fall into the “if” part vs
the “else” part

— Needs test cases for each subdomain

— Also needs to test boundary cases (where the code switches
from the “if” branch to the “else” branch

— Ex:
. = In this example, we would need 4 test cases. There are 2
. f (n > 1) { subdomains and each subdomain performs a straight-line
return 2 x (n -1) + 1 . calculation (which needs 2 tests each)
} else {
return O;

Review — Testing

 Recursive Calls:
— Functional code contains recursive calls
— Base case contains straight-line calculation
— Needs a minimum of 2 test cases for “recursive calls”
* One that recursively calls the base case
* One that recursively calls the recursive call
- Ex:

function 1 (Il : nuIHber) : number { In this example, we would need 3 test cases. 1 for the
b (Il >= 1) { base case and 2 for the recursive calls
return 2 * f(n - 1) + 1;
} else {
return O;
s
}

Question 3

(b) How many tests should we write for the following function? Why?

function quadrant(x: number, y: number): 1[2|3[4 {
if (x >=0) {
return (y >= 0) 7 1 : 2;
} else {
return (y <= 0) 7 3 : 4;
L,
}

(c) How many tests should we write for the following function, defined only on the non-negative integers?
Why? What are the tests that we should use?

function f(n: number): number {

if (n === 0) {
return 0;

} else if (n === 1) {
return 1;

} else if (n % 2===1) { // n is > 1 and odd
return f(n - 2) + 1;

} else { // n is > 1 and even
return f(n - 2) + 1;

Question 3

(b) How many tests should we write for the following function? Why?

function quadrant(x: number, y: number): 1[2[3|4 {
if (x >= 0) {

return (y >=0) ? 1 : 2; Each branch has an if statement, so 4
} else { branches total. Thus we need 8 tests
return (y <= 0) 7 3 : 4;

.
}

(c) How many tests should we write for the following function, defined only on the non-negative integers?
Why? What are the tests that we should use?

function f(n: number): number {

if (n === 0) {
return 0;

} else if (n === 1) {
return 1;

} else if (n % 2===1) { // n is > 1 and odd
return f(n - 2) + 1;

} else { // n is > 1 and even

return f(n - 2) + 1;

Question 3

(b) How many tests should we write for the following function? Why?

function quadrant(x: number, y: number): 1[2[3|4 {
if (x >=0) {

return (y >=0) ? 1 : 2; Each branch has an if statement, so 4
} else { branches total. Thus we need 8 tests
return (y <= 0) 7 3 : 4;

.
}

(c) How many tests should we write for the following function, defined only on the non-negative integers?
Why? What are the tests that we should use?

function f(n: number): number {

if (n === 0) { 2 base cases. 2 recursive cases, each
return 0; which require 2 tests. So a total of 6

} else if (n === 1) {
return 1;

} else if (n % 2===1) { // n is > 1 and odd
return f(n - 2) + 1;

} else { // n is > 1 and even

return f(n - 2) + 1;

Question 4

function f(n: number): number {
if (n == 0) A
return O;
} else {
return A * f(n - 1) + B;
+
kL

(a) What are the values of f(0), f(1), f(2), and f(3) in terms of A and B?

(b) Suppose that we typed in the wrong value for A in the code. If we test the output of f for each input
starting from 0, how far do we have to go before we could notice that A was wrong?

Question 4

function f(n: number): number {
if (n == 0) {
return O;
} else {
return A * f(n - 1) + B;

¥

(a) What are the values of f(0), f(1), f(2), and f(3) in terms of A and B?

f(0) = 0

f(1)=A*f(0)+B =A*0+B=B
f2)=A*f(1)+B=A*B+B=AB+B
f(3)=A*f(2)+B=A*(AB +B)=AB2+ AB + B

Question 4

function f(n: number): number {
if (n == 0)
return O;
} else {
return A * f(n - 1) + B;
+
kL

(b) Suppose that we typed in the wrong value for A in the code. If we test the output of f for each input
starting from 0, how far do we have to go before we could notice that A was wrong?

A does not show up in the answer until n = 2, so we need
to test at least 0, 1, 2 before we could notice A is wrong

Attendance

Please fill out the Google Form at the following link:

