CSE 331

Course Review

Kevin Zatloukal

Administrivia: Course Evals

 Would like to get above 50%

— more statistical sample

* Looking for feedback on first attempt at this course

— know about a few stumbles
HW?2: need to explain pattern matching better
HWS8: need to explain POST requests better

* Will make it your time to write an eval

Administrivia: Final Exam

* Both exams are on Tuesday
— B section at 2:30 in Kane 110
— A section at 4:30 in Kane 110

* Will be like the midterm but longer (110 minutes)
— emphasis on the same core reasoning skills
— ideally more comprehensive

Administrivia: Final Exam

e 6-7 problems

e 4 problems like the midterm -
Correctness of a complex loop

Writing a loop correctly given the invariant
Writing code correctly given no invariant
Testing

core material

hwOn PR

e 2-3 more on
— things we skipped in midterm: ADT reasoning, induction
— things covered more recently: subtyping, equality, design patterns
— more like the midterm (!) or anything else

Debugging is No Fun

 Code with mutable state often involves debugging
— saw this in HW7-9

* Gets even worse as the program gets larger
— lots more parts that can fail
— lots more code to search through

* Only time spent debugging makes you hate debugging
— watching a lecture won’t do it

Engineers Are Paid to Think

* For complex code, reasoning is not optional

— going to do the reasoning eventually
complex code is not correct by accident

— choice is between
1. reasoning
2. debugging and then reasoning

 Easier to get it right the first time!

Course Goals

To teach you to the skills necessary to write programs at
the level of a professional software engineer

Specifically, we will teach the skills to write code that is

» | correct|

e easy to understand
* easy to change

* modular

We will set an extremely high bar for correctness

Standard Techniques for Correctness

Standard practice uses three techniques:
* Testing: try it on a well-chosen set of examples
* Tools: type checker, libraries, etc.

* Reasoning: think through your code carefully
— have another person do the same (“code review”)

Each removes ~2/3' bugs but of different kinds
Combination removes >97% of bugs

Tools

 Saw one case with no tool support: client-server

 POST is “passing arguments” to the server
— but there is no type information!

we must check all the types ourselves at runtime (or debug!)

* Type checking is very useful!

Reasoning

 Reasoning is the key skill of a programmer

“the Olympic athletes of forward reasoning” — J. Wilcox
— either reason now or after debugging
— why we spent 12+ lectures on it

 Saw how mutation makes everything harder

— most hard bugs in HW2 were mutation

— most hard bugs in HW7 were mutation
some function was mutating one of its arguments when it shouldn’t

— most hard bugs in HW8-9 were mutation
components work by mutating this.state

* Pro Tip: limit mutation to make reasoning easier

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics type checking code reviews
1 no mutation “ libraries calculation
induction
2 local variable “ “ Floyd logic
mutation
3 array / object “ “ rep invariants
mutation
4 state in two “ “ more invariants

programs

Topics

Primary Topics
e Basics of correctness (tools, testing, & reasoning)
* Writing correct programs without mutation
* Writing correct programs with mutation

* Client & Server applications

Other Topics
* Abstraction
* Debugging
* Design Patterns

Tips

1. Know the Correctnhess Level

* Level -1 is especially important
— nho need for reasoning — just look at it!

— happens frequently with Ul
look at it to see if it is right
try it out to see if it transitions pages correctly

* Reasoning is only necessary at Level 1-4
— spend your reasoning efforts only there

* Atlevel 3-4, expect to debug
— make sure all the helper functions are right before you start

2. Keep the Level Low

Do not make the level higher for no reason
— do not mutate if you don’t need to

— do not introduce state when not necessary
ex: passing data through a field rather than as an argument
why do this to yourself?

 Bad programmers make easy problems hard
— good programmers don’t do that
— plenty of problems to solve that are already hard

3. Use the Type Checker

* Type checking catches many errors for you
— see previous example about POST requests

* Do not purposefully ignore its help

— no type checking means lots more debugging
we all make lots of mistakes in these areas

— saw plenty of “val: any” in HWS8
why do this to yourself?

4. Use Libraries When Available

* ltis hard to get code working correctly
— design, testing, reasoning, debugging
— don’t do all that work when you don’t need to

* If someone already did the work, take advantage
— reduces the work to making sure you use it right

5. Start With Data Design

* Figure out what data you need to make the Ul work
— code follows from the data

e Server stores the permanent data
— decide what operations are needed by the client
— make sure you get these right!

* Ul stores data necessary to render
— everything on the Ul is somewhere in the data

6. Start with Simple, Concrete Data Types

* Reasoning is easier with concrete data types
— start there, whenever possible

e Hard for us to predict:
— what will be slow
— what users will like (see, e.g., ChatGPT)

* Avoid unnecessary work
— not everything is an ADT
I’m talking to you, Java!

— don’t complicate things until you know you need to
don’t prematurely optimize
don’t prematurely abstract

7. Hide Complex Data Structures in ADTs

Introduce ADT on first change to data structures
— if you change it once, you’ll probably do it again

Give a simple spec to clients
— probably the initial concrete state is the abstract state
— allow the clients to think about it as they did before

Make sure you got it right before moving on
debugging is hard enough already

Rep invariants are the key to complex data structures
— see, e.g., AVL trees

8. Hide Complex Loops in Helper Functions

* Think of a simple, declarative explanation for clients
— don’t let complexity leak everywhere else

 Make sure you got it right before moving on
debugging is hard enough already

* Loop invariants are the key to complex loops
— see, e.g., dynamic programs in CSE 421

— write it down fully and check it carefully in every branch
won’t get it right by accident

— human readers don’t need invariants for every loop

9. Be Systematic When Debugging

After 20 minutes, stop trying things randomly

Check the easy stuff first
— if the server needs restarting, reasoning is a waste of time

Debugging happens when your knowledge is wrong
— don’t think “it can’t be there”...

Think through all the places the bug could be
— start eliminating them one at a time
— think of an experiment that will reduce the search

10. Expect to Get Things Wrong

* First design is inevitably wrong in some ways
— can only design perfectly when you’ve built that before

 Can’t always guess on paper
— need to try building it to see the key problems

* Design for changeability in the parts likely to change
— put abstraction in place the first time you change it
— (don’t introduce abstraction unnecessarily)

Startups

Startups in 2021

Funded Startups 70 465

Dedicated
VC Funds

Engineers Started Many Companies

Some prominent examples...

] Microsoft Bill Gates & Paul Allen

" Apple Steve Jobs
GO gle Sergey Brin & Larry Page
00 Meta Mark Zuckerberg
@z Jensen Huang

& NVIDIA

llllllllllllll
N 7

llllllllll
IIIIIIIIII

Very Little Downside

e Starting a company has almost no downside
— expected to fail
— lose other people’s money, not yours

* “Founder of X” looks great on a resume
— demonstrates grit, risk-taking, etc.
— many other important skills

 Main loss to you is the time spent

Don’t Feel Weird Raising Funds

* Investors work for you
— they join your team and are expected to help
— the more they pay, the more you expect from them

* VCs can help you find customers, employees, etc.

* Old saying in finance
When you owe the bank $100, that’s your problem.
When you owe the bank $100m, that’s the bank’s problem.

Advice for Starting a Company

 Advice from YC:

1.

2.
3.
4

Build something people want
Launch fast & iterate

Write code & talk to users

Find 10-100 people who love it

* Think of things you would like to use
— or that improve the lives of others

 Can become for-profit or non-profit
— hard to know up front what will work best

