
Course Review
Kevin Zatloukal

CSE 331

Administrivia: Course Evals

• Would like to get above 50%
– more statistical sample

• Looking for feedback on first attempt at this course
– know about a few stumbles

HW2: need to explain pattern matching better
HW8: need to explain POST requests better

• Will make it your time to write an eval

Administrivia: Final Exam

• Both exams are on Tuesday
– B section at 2:30 in Kane 110
– A section at 4:30 in Kane 110

• Will be like the midterm but longer (110 minutes)
– emphasis on the same core reasoning skills
– ideally more comprehensive

Administrivia: Final Exam

• 6–7 problems

• 4 problems like the midterm
1. Correctness of a complex loop
2. Writing a loop correctly given the invariant
3. Writing code correctly given no invariant
4. Testing

• 2–3 more on
– things we skipped in midterm: ADT reasoning, induction
– things covered more recently: subtyping, equality, design patterns
– more like the midterm (!) or anything else

core material

Debugging is No Fun

• Code with mutable state often involves debugging
– saw this in HW7-9

• Gets even worse as the program gets larger
– lots more parts that can fail
– lots more code to search through

• Only time spent debugging makes you hate debugging
– watching a lecture won’t do it

Engineers Are Paid to Think

• For complex code, reasoning is not optional
– going to do the reasoning eventually

complex code is not correct by accident

– choice is between
1. reasoning
2. debugging and then reasoning

• Easier to get it right the first time!

Course Goals

To teach you to the skills necessary to write programs at
the level of a professional software engineer

Specifically, we will teach the skills to write code that is
• correct
• easy to understand
• easy to change
• modular

We will set an extremely high bar for correctness

Standard Techniques for Correctness

Standard practice uses three techniques:

• Testing: try it on a well-chosen set of examples

• Tools: type checker, libraries, etc.

• Reasoning: think through your code carefully
– have another person do the same (“code review”)

Each removes ~2/3rd bugs but of different kinds
Combination removes >97% of bugs

Tools

• Saw one case with no tool support: client-server

• POST is “passing arguments” to the server
– but there is no type information!

we must check all the types ourselves at runtime (or debug!)

• Type checking is very useful!

Reasoning

• Reasoning is the key skill of a programmer
“the Olympic athletes of forward reasoning” — J. Wilcox

– either reason now or after debugging
– why we spent 12+ lectures on it

• Saw how mutation makes everything harder
– most hard bugs in HW2 were mutation
– most hard bugs in HW7 were mutation

some function was mutating one of its arguments when it shouldn’t

– most hard bugs in HW8-9 were mutation
components work by mutating this.state

• Pro Tip: limit mutation to make reasoning easier

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 no mutation “ libraries calculation
induction

2 local variable
mutation

“ “ Floyd logic

3 array / object
mutation

“ “ rep invariants

4 state in two
programs

“ “ more invariants

Topics

Primary Topics
• Basics of correctness (tools, testing, & reasoning)
• Writing correct programs without mutation
• Writing correct programs with mutation
• Client & Server applications

Other Topics
• Abstraction
• Debugging
• Design Patterns

Tips

1. Know the Correctness Level

• Level –1 is especially important
– no need for reasoning — just look at it!
– happens frequently with UI

look at it to see if it is right
try it out to see if it transitions pages correctly

• Reasoning is only necessary at Level 1–4
– spend your reasoning efforts only there

• At level 3–4, expect to debug
– make sure all the helper functions are right before you start

2. Keep the Level Low

• Do not make the level higher for no reason
– do not mutate if you don’t need to
– do not introduce state when not necessary

ex: passing data through a field rather than as an argument
why do this to yourself?

• Bad programmers make easy problems hard
– good programmers don’t do that
– plenty of problems to solve that are already hard

3. Use the Type Checker

• Type checking catches many errors for you
– see previous example about POST requests

• Do not purposefully ignore its help
– no type checking means lots more debugging

we all make lots of mistakes in these areas

– saw plenty of “val: any” in HW8
why do this to yourself?

4. Use Libraries When Available

• It is hard to get code working correctly
– design, testing, reasoning, debugging
– don’t do all that work when you don’t need to

• If someone already did the work, take advantage
– reduces the work to making sure you use it right

5. Start With Data Design

• Figure out what data you need to make the UI work
– code follows from the data

• Server stores the permanent data
– decide what operations are needed by the client
– make sure you get these right!

• UI stores data necessary to render
– everything on the UI is somewhere in the data

6. Start with Simple, Concrete Data Types

• Reasoning is easier with concrete data types
– start there, whenever possible

• Hard for us to predict:
– what will be slow
– what users will like (see, e.g., ChatGPT)

• Avoid unnecessary work
– not everything is an ADT

I’m talking to you, Java!

– don’t complicate things until you know you need to
don’t prematurely optimize
don’t prematurely abstract

7. Hide Complex Data Structures in ADTs

• Introduce ADT on first change to data structures
– if you change it once, you’ll probably do it again

• Give a simple spec to clients
– probably the initial concrete state is the abstract state
– allow the clients to think about it as they did before

• Make sure you got it right before moving on
debugging is hard enough already

• Rep invariants are the key to complex data structures
– see, e.g., AVL trees

8. Hide Complex Loops in Helper Functions

• Think of a simple, declarative explanation for clients
– don’t let complexity leak everywhere else

• Make sure you got it right before moving on
debugging is hard enough already

• Loop invariants are the key to complex loops
– see, e.g., dynamic programs in CSE 421
– write it down fully and check it carefully in every branch

won’t get it right by accident

– human readers don’t need invariants for every loop

9. Be Systematic When Debugging

• After 20 minutes, stop trying things randomly

• Check the easy stuff first
– if the server needs restarting, reasoning is a waste of time

• Debugging happens when your knowledge is wrong
– don’t think “it can’t be there”…

• Think through all the places the bug could be
– start eliminating them one at a time
– think of an experiment that will reduce the search

10. Expect to Get Things Wrong

• First design is inevitably wrong in some ways
– can only design perfectly when you’ve built that before

• Can’t always guess on paper
– need to try building it to see the key problems

• Design for changeability in the parts likely to change
– put abstraction in place the first time you change it
– (don’t introduce abstraction unnecessarily)

Startups

Startups in 2021

UW Stanford

Funded Startups 70 465

Dedicated
VC Funds

1 3

Engineers Started Many Companies

Microsoft Bill Gates & Paul Allen

Apple Steve Jobs

Sergey Brin & Larry Page

Meta Mark Zuckerberg

Jensen Huang

Morris Chang

Some prominent examples…

Very Little Downside

• Starting a company has almost no downside
– expected to fail
– lose other people’s money, not yours

• “Founder of X” looks great on a resume
– demonstrates grit, risk-taking, etc.
– many other important skills

• Main loss to you is the time spent

Don’t Feel Weird Raising Funds

• Investors work for you
– they join your team and are expected to help
– the more they pay, the more you expect from them

• VCs can help you find customers, employees, etc.

• Old saying in finance
When you owe the bank $100, that’s your problem.
When you owe the bank $100m, that’s the bank’s problem.

Advice for Starting a Company

• Advice from YC:

1. Build something people want
2. Launch fast & iterate
3. Write code & talk to users
4. Find 10–100 people who love it

• Think of things you would like to use
– or that improve the lives of others

• Can become for-profit or non-profit
– hard to know up front what will work best

