
Design Patterns
Kevin Zatloukal

CSE 331

Administrivia

• HW8: level 4?
– state in both the client and server
– lots of debugging

• HW9 will be released tomorrow

• Monday is a holiday
– no lecture
– no OHs unless announced otherwise (on Ed)

Design Patterns

• Introduced in the book of that name
– written by the “Gang of Four”

Gamma, Helm, Johnson, Vlissides

– worked in C++ and SmallTalk

• Found that they independently developed
many of the same solutions to recurring problems
– wrote a book about them
– required at least three real-world uses to be included

Reasons for Design Patterns

• Many are solutions to problems with OO languages
– authors worked in C++ and SmallTalk

• Some are techniques for increasing changeability
– albeit it a cost in terms of abstraction & complexity

more abstraction will likely make debugging harder
do not over-use design patterns!

• Terminology itself is often useful
– shorthand description of a design
– high-level programming idiom

Parts of a Design Patterns

Each pattern in the book includes

• Problem to be solved

• Description of the solution

• Name of the pattern

Java Example: Iterator

• Java Collections use the Iterator Design Pattern
– enumerate a collection while hiding data structure details
– return another ADT that outputs the items

that object knows how to walk through the data structure
operations for retrieving the current item and moving on to the next one

• Clever idea that is now used everywhere
– I remember when C++ introduced iterators
– huge improvement over code we were writing before

Categories of Design Patterns

The book has three categories of patterns

• Creational: factory function, factory object,
 builder, prototype, singleton, …

• Structural: adapter, bridge, composite, decorator,
 façade, flyweight, proxy

• Behavioral: command, interpreter, iterator, mediator,
 observer, state, strategy, visitor, …

– we will not cover all, just some highlights

Categories of Design Patterns

The book has three categories of patterns

• Creational: factory function, factory object,
 builder, prototype, singleton, …

• Structural: adapter, bridge, composite, decorator,
 façade, flyweight, proxy

• Behavioral: command, interpreter, iterator, mediator,
 observer, state, strategy, visitor, …

– green = mentioned already

Creational Patterns

• One third of the patterns deal with object creation

• We saw why last time: constructors suck
– surprisingly error-prone
– several important limitations

1. Cannot return an existing object
2. Cannot return a different class
3. Does not have a name!

• Already saw factory functions and singleton
– yet we still need more!

Creational Pattern: Builder

• Object that helps with creation of another object
– constructor / factory requires you to give info all at once
– builder lets you describe what you want bit by bit

• Java Example: StringBuilder

StringBuilder buf = new StringBuilder();
buf.append(“Total distance: “);
buf.append(distance);

buf.append(“ meters.”);

return buf.toString();

– each call adds more text / number to the final string
– we can’t do this with strings because strings are immutable

Creational Pattern: Builder

• A Builder helps with creation of another class
– constructor requires you to give info all at once
– builder lets you describe what you want bit by bit

• Good pairing: mutable Builder for an immutable type
– must avoid aliasing with the mutable builder

e.g., never use it as a key in a BST or Map

– immutable object can be shared arbitrarily
no worries about aliasing

– only need to be extra careful with the mutable part

Creational Pattern: Builder

• Builder is often written like this:

class FooBuilder {
 …

 public FooBuilder setX(int x) {
 this.x = x;

 return this;
 }
 …

 public Foo build() { … }
}

– can then use them like this

Foo f = new FooBuilder().setX(1).setY(2).build();

avoids worries about argument order

Structural Pattern: Adapter

• Mentioned of these in lecture 3: adapter

• In Java, these two classes are not interoperable:

interface Duration {
 int getMinutes();
 int getSeconds();
}

interface AmountOfTime {
 int getMinutes();
 int getSeconds();
}

– cannot pass one where the other is expected

Structural Pattern: Adapter

• Mentioned of these in lecture 3: adapter

• Get around this by creating an adapter

class DurationAdapter implements AmountOfTime {

 private Duration d;

 int getMinutes() { return d.getMinutes(); }
 int getSeconds() { return d.getSeconds(); }
}

– makes a Duration into an AmountOfTime

Structural Pattern: Adapter

• Adapters are often needed with nominal typing
– design pattern working around a language issue

• With structural typing, these two interoperate:

type Duration = {min: number, sec: number};

type AmountOfTime = {min: number, sec: number};

– can pass either where the other is expected
– not an issue of concrete vs abstract

still interoperable if we have getMinutes and getSeconds methods

Trees

• Trees are inductive data types
– anything with a constructor that has 2+ recursive arguments

HW8 tree (Square) has 4 recursive arguments

• They arise frequently in practice
– HTML: used to describe UI
– JSON: used for client/server communication
– parse trees: represent code

Parse Tree

• Output of parsing is a tree
– encodes the order of operations

• Example: parse of “x = a * b + c / d”

x +

=

*

ba

/

dc

Parse Tree

• Output of parsing is a tree
– records the order of operations

• Parse tree is an inductive data type

type	Expression		:=		variable(name:	𝕊*)
	 	 	 					|			constant(val	:	ℤ)
	 	 	 					|			plus(left	:	Expr,	right	:	Expr)
	 	 	 					|			times(left	:	Expr,	right	:	Expr)
	 	 	 					|			divide(left	:	Expr,	right	:	Expr)
	 	 	 					|			assign(name	:	𝕊*,	value	:	Expr)

– parse of “x = a * b + c / d”

assign(“x”,	plus(times(variable(“a”),	variable(“b”)),
																												divide(variable(“c”),	variable(“d”)))

Operations on Parse Trees

• Compilers perform various operations on expressions
– type check
– evaluate
– generate code

• Each operation defined for each type of expression

Type of Expr

Variable Plus Times

Operation
type check

eval

code gen

Operations on Parse Trees

• Need to write code for each box
– each case is slightly different

• Two reasonable ways to organize into files
– file per expression type: Interpreter pattern
– file per operation: Procedural pattern

Type of Expr

Variable Plus Times

Operation
type check

eval

code gen

Interpreter Pattern

interface Expr {
 typeCheck = (c: Context) => Type,
 evaluate = (c: Context) => number | undefined,
 generate = (c: Context) => List<Instruction>

}

class Variable implements Expr {
 name: string;
 typeCheck = (c: Context): Type => {

 return c.get(this.name);
 }
 evaluate = (c: Context): number | undefined => {

 return undefined;
 }

 …
}

• Each type of expression is a class

Interpreter Pattern

interface Expr {
 typeCheck = (c: Context) => Type,
 evaluate = (c: Context) => number | undefined,
 generate = (c: Context) => List<Instruction>

}

• Easy to add new types of expression
– new subtype of Expr
– goes into its own file

• Hard to add new operations
– new method of Expr
– changes every file

Procedural Pattern

interface Procedure<R> {
 processVar = (v: Variable, c: Context) => R,
 processConst = (n: Constant, c: Context) => R,
 …

}

class TypeChecker implements Procedure<boolean> {
 processVar = (v: Variable, c: Context): boolean => {
 return c.has(v.name);
 }

 processConst = (n: Constant, c: Context): boolean => {
 return true;
 }
 …

}

• Each type of procedure is a class
– one method for each type of expression

Procedural Pattern

interface Procedure<R> {
 processVar = (v: Variable, c: Context) => R,
 processConst = (n: Constant, c: Context) => R,
 …

}

• Easy to add new types of operations
– new subtype of Procedure
– goes into its own file

• Hard to add new expressions
– new method of Procedure
– changes every file

Interpreter vs Procedural Pattern

• Both patterns are reasonable
– best choice is problem-dependent

for a compiler, I prefer the procedural pattern

• But there is a problem with Procedural in OO
– suppose e is an Expr but we don’t know which one
– how do we call the right method?

could be processVar, processConst, processPlus, …

Problems with Procedural Pattern in OO

function process(p: Procedure, e: Expr, c: Context) {
 if (e instanceof Variable) {
 p.processVar(e, c);
 } else if (e instanceof Constant) {
 p.processConst(e, c);

 } else if (e instanceof Plus) {
 p.processPlus(e, c);

 } else …
}

• Not great, Bob!
– code is slow
– will call it enough times that this will matter

• There is a solution, but… buckle up!

Dynamic Dispatch (good case in Java)

interface Expr {
 boolean typeCheck(Context c);
}

class Variable implements Expr {
 public boolean typeCheck(Context c) { … }
}

class Constant implements Expr {
 public boolean typeCheck(Context c) { … }
}

• Java / TypeScript (or any OO) makes this case easy

Expr e = …

e.typeCheck(c); // e could be any Expr

– automatically “dispatches” to the right method

Dynamic Dispatch (bad case in Java)

interface Procedure<R> {
 R process(Variable v, Context c);
 R process(Constant n, Context c);
 …

}

class TypeChecker implements Procedure<Boolean> {
 Boolean process(Variable v, Context c) { … }
 Boolean process(Constant c, Context c) { … }

 …

}

• This is impossible in Java:
Process p = new TypeChecker();
Expr e = …

p.process(e, c); // e could be any Expr

overloading

Dynamic Dispatch (bad case in Java)

• This is impossible in Java:

Process p = new TypeChecker();
Expr e = …

p.process(e, c); // e could be any Expr

• Need to put “e” before “.” to get dynamic dispatch
– here’s how we do that… (gulp)

Double Dispatch

interface Procedure<R> {
 R process(Variable v, Context c);
 R process(Constant n, Context c);
 …

}

interface Expr {
 R perform(Procedure<R> p, Context c);
}

class Variable implements Expr {
 public R perform(Procedure<R> p, Context c) {
 p.process(this, c);

 }
}

class Constant implements Expr {
 public R perform(Procedure<R> p, Context c) {
 p.process(this, c);
 }

}

calls process(Variable, Context)

calls process(Constant, Context)

Double Dispatch

interface Procedure<R> {
 R process(Variable v, Context c);
 R process(Constant n, Context c);
 …

}

interface Expr {
 R perform(Procedure<R> p, Context c);

}

• We can now do this
Process p = new TypeChecker();

Expr e = …

e.perform(p, c); // e could be any Expr

– calls Expr.perform, which calls TypeChecker.process
– two function calls is still faster than all the “if”s

Double Dispatch

• This works, but... why so hard?

• Other languages just let you do this:

Process p = new TypeChecker();
Expr e = …

p.process(e, c); // e could be any Expr

– or even more general “multiple dispatch” cases
– use a better language?

Traversing Trees

• Same idea is used to traverse trees

type	Expression		:=		variable(name:	𝕊*)
	 	 	 					|			constant(val	:	ℤ)
	 	 	 					|			plus(left	:	Expr,	right	:	Expr)
	 	 	 					|			times(left	:	Expr,	right	:	Expr)
	 	 	 					|			divide(left	:	Expr,	right	:	Expr)
	 	 	 					|			assign(name	:	𝕊*,	value	:	Expr)

– parse of “x = a * b + c / d”

assign(“x”,	plus(times(variable(“a”),	variable(“b”)),
																												divide(variable(“c”),	variable(“d”)))

– would like to process (“visit”) each node in this tree

Visitor Pattern

interface ExprVisitor {
 visitVariable = (v: Variable) => void,
 visitConstant = (n: Constant) => void,
 visitPlus = (p: Plus) => void,

 …

}

interface Expr {
 // Visits this node and all its children.
 accept = (v: ExprVisitor) => void

}

class Variable implements Expr {
 name: string;
 accept = (v: ExprVisitor): void => {

 v.visitVariable(this);
 }
}

…

Visitor Pattern

• Combines double dispatch with tree traversal

class Plus implements Expr {
 left: Expr;
 right: Expr;

 accept = (v: ExprVisitor): void => {
 left.accept(v);

 right.accept(v);
 v.visitVariable(this);
 }

}

– traverses children before visiting parent

Visitor Pattern

p.accept(v)

 t.accept(v)
 a.accept(v)

 v.visitVariable(a)
 b.accept(v)

 v.visitConstant(2)
 v.visitTimes(t)

 d.accept(v)

 …
 v.visitDivide(p)

 v.visitPlus(p)
+

*

2a

/

dc

p

t d

