
Subtypes
Kevin Zatloukal

CSE 331

Last Time on CSE 331

• Covered all the core theoretical material
– covered on midterm and final

• Covered the core practical material
– covered in HW8–9

• Remaining lectures will cover non-core topics
– won’t be needed for HW
– could be covered (small questions) on the final

Object-Oriented Programming

• We haven’t done any OO this quarter
– this week, we will see some reasons why!

• Plan for this week:
– focus on topics that are good to know but not good for HW

usually, mistakes you want to avoid

– every lecture will include one related to OO

Subtypes

Subtypes of Concrete Types

• We initially defined types as sets

• In math, a subtype can be thought of as a subset
– e.g., the even integers are a subtype of ℤ
– e.g., the numbers {1, 2, 3, 4, 5, 6} are a subtype of ℤ

• Any even integer “is an” integer
– “is a” is often (but not always) good intuition for subtypes

Subtypes of Concrete Types

• We initially defined types as sets

• In TypeScript, some subtypes are also subsets
– number has a set of allowed values
– it is a subtype of types that allow those values + more

unknown

number | string

number

Subtypes of Concrete Types

• We initially defined types as sets

• In TypeScript, some subtypes are also subsets
– record types require certain fields but allow more
– record type with a superset of the fields is a subtype

{name: string}

{name: string, completed: boolean}

Subtyping Used by TypeScript

• TypeScript uses subtyping in function calls

function f(s: number | string): number { … }

const x: number = 3;
… f(x) …

– types are not the same (number vs number | string)
– subtype can be passed where super-type is expected

any element of the subtype “is an” element of the super-type

• Similar rules in Java

Subtyping Used by TypeScript

• TypeScript uses subtyping in function calls

function f(n: number): number { … }

const x: number | string = f(3);

– types are not the same (number vs number | string)
– subtype can be returned where super-type is expected

any element of the subtype “is an” element of the super-type

• Similar rules in Java

Subtyping Used by TypeScript

• TypeScript only sees the declared types
– any other behavior is left to reasoning

• Example: invariants

// RI: 0 <= index < options.length
type OptionState = {
 options: string[],
 index: number
}

Subtyping Used by TypeScript

• OptionState is a subtype of the bare record type
– it is a record with those fields
– but reverse is not true

• TypeScript will see these as the same
– will let you pass the top where the bottom is expected

up to us to make sure this doesn’t happen

{options: string[], index: number}

OptionState

Subtypes of Abstract Types

• Recall: ADTs are collections of functions
– hide the concrete data
– pass functions that operate on the data

create, observe, mutate

• Subtypes are subsets does not work well here
– set of all possible functions with … yuck

• Would be nice to find a cleaner approach

Subtypes Are Substitutable

• If B is a subtype of A, can send B where A is expected:

function f(s: A): void { … }
function g(): B { … }

const x: B = 3;
f(x); // okay

const y: A = g(); // okay

– okay to “substitute” a B where an A is expected

A

B

Subtypes Are Substitutable

• Subtypes are substitutable for supertype
– this is the “Liskov substitution principle”
– due to Barbra Liskov

• For ADTs, we use this as our definition of subtypes
– (for concrete types, subsets are usually easier)

Subtypes of Abstract Types

• When is ADT B substitutable for A?

• Must satisfy two conditions:

1. B must provide all the methods of A
If A has a method “f”, then B must have a method called “f”

2. B’s corresponding method must…
must accept all the inputs that A’s does
must also promise everything in A’s postcondition

I.e., B must have the same or a stronger spec

Review: Strengthening a Specification

interface A {
 f(x: number): number

 // @requires x >= 0
 g(x: number): number
}

• Stronger specs allow more (or same) inputs
– allowed argument types are supersets

interface B extends A {
 f(x: number | string): number
}

– fewer requirements on arguments
interface C extends A {
 g(x: number): number // x can be negative
}

Review: Strengthening a Specification

interface A {
 f(x: number): number

 // @requires x >= 0
 g(x: number): number
}

• Stronger specs promise more (or same) outputs
– more specific return type (or thrown type)

interface D extends A {
 f(x: number): 0 | 1 | 2 | 3
}

Review: Strengthening a Specification

interface A {
 f(x: number): number

 // @requires x >= 0
 g(x: number): number
}

• Stronger specs promise more (or same) outputs
– more specific return type (or thrown type)
– more facts included in @returns and @effects

interface E extends A {
 // @requires x >= 0
 // @returns an even integer
 g(x: number): number
}

– fewer objects listed in @modifies

Example: Rectangle and Square

• Is Square a subtype of Rectangle?
– math intuition says yes
– a square “is a” rectangle

• Let’s check this with substitutability…

Example: Immutable Rectangle and Square

interface Rectangle {
 getWidth(): number,
 getHeight(): number
}

// A rectangle with width = height
interface Square extends Rectangle {
 getSideLength(): number
}

• Is Square substitutable for Rectangle?
– allows the same inputs (none)
– makes the same promises about outputs (numbers)
– adds another promise: both methods return same number

Yes

extra invariant
on abstract state

Example: Mutable Rectangle and Square

interface Rectangle {
 getWidth(): number,
 getHeight(): number
 resize(width: number, height: number): void
}

// A rectangle with width = height
interface Square extends Rectangle {
 // @requires width = height
 resize(width: number, height: number): void
}

• Is Square substitutable for Rectangle?
– allows fewer inputs to resize!

No!

Example: Mutable Rectangle and Square

• None of these work:

// @requires width = height
resize(width: number, height: number): void

// @throws Error if width != height
resize(width: number, height: number): void

// Sets height = width also
resize(width: number): void

• Mutation sometimes makes subtyping impossible
– yet another reason to avoid it

incomparable specs

Subclasses

Subclasses

• Java subclassing is a means of sharing code
– subclass gets parent fields & methods (unless overridden)

class Product {
 private String name;
 private int price;
 public String getName() {return name; }
 public int getPrice() { return price; }
}

class SaleProduct extends Product {
 private float discount;
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

Subclasses

• Subclassing does not guaranty subtyping relationship

class Product {
 public int getPrice() { ... }

 // @returns true iff obj’s price < p’s price
 public boolean isCheaperThan(Product p) {
 return getPrice() < p.getPrice();
 }
}

class WackyProduct extends Product {
 // @returns some boolean value
 public boolean isCheaperThan(Product p) {
 return false;
 }
} Legal Java, but not a subtype

Subclasses

• Java subclassing is a means of sharing code
– subclass gets parent fields & methods (unless overridden)

• Does not guarantee subtyping
– up to you to check that method specs are stronger

• Java treats it as a subtype
– will let you pass subclasses where superclass is expected

• Subclassing is a surprisingly dangerous feature
– that’s not the only reason…

Subclasses

• Subclassing is a surprisingly dangerous feature

• Subclassing tends to break modularity
– creates tight coupling between super- and sub-class
– often see the “fragile base class” problem

changes to super class often break subclasses

• Let’s see some Java examples…

Example 1: Tight Coupling

class Product {
 private int price;
 public int getPrice() { return price; }

 // @returns true iff obj’s price < p’s price
 public boolean isCheaperThan(Product p) {
 return getPrice() < p.getPrice();
 }

}

class SaleProduct extends Product {
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

– looks okay so far…

Example 1: Tight Coupling

class Product {
 private String price;
 public int getPrice() { return price; }

 // @returns true iff obj’s price < p’s price
 public boolean isCheaperThan(Product p) {
 return this.price < p.price;
 }

}

class SaleProduct extends Product {
 public int getPrice() {
 return (1 – discount) * super.getPrice();
 }
}

Made it faster by eliminating a method call!

What’s wrong?

Oops! Broke the subclass

Example 2: Tight Coupling

class InstrumentedHashSet extends HashSet<Integer> {
 private static int count = 0;

 public boolean add(Integer e) {
 count += 1;
 return super.add(e);
 }

 public boolean addAll(Collection<Integer> c) {
 count += c.size();

 return super.addAll(c);
 }

 public int getCount() { return count; }
}

– what could possibly go wrong?

Example 2: Tight Coupling

InstrumentedHashSet S = new InstrumentedHashSet();
System.out.println(S.getCount()); // 0
S.addAll(Arrays.asList(1, 2));
System.out.println(S.getCount());

– what does this print?

• What is printed depends on HashSet’s addAll:
– if it calls add, then this prints 4
– if it does not call add, then this prints 2

• Also possible to be dependent on order of calls

// 4?!?

Example 3: Tight Coupling

class WorkList {
 // RI: len(names) = len(times) and total = sum(times)
 protected ArrayList<String> names;
 protected ArrayList<Integer> times;
 protected int total;

 public addWork(Job job) {
 addToLists(job.getName(), job.getTime());

 total += job.getTime();
 }

 protected addToLists(String name, int time) {
 names.add(name);

 times.add(time);
 }

}

Example 3: Tight Coupling

// Makes sure no task is too large compared to rest
class BalancedWorkList extends WorkList {
 protected addToLists(String name, int time) {
 if (times.size() <= 3 || 2*time < total)
 super.addToLists(name, time); // okay
 } else {
 throw new ImbalancedWorkException(name, time);
 }
 }

}

– prevents item from being added if too big
– (also: this subclass is not a subtype!)

Example 3: Tight Coupling

class WorkList {
 // RI: len(names) = len(times) and total = sum(times)
 protected ArrayList<String> names;
 protected ArrayList<Integer> times;
 protected int total;

 public addWork(Job job) {
 int time = job.getTime(); // just one call
 total += time;
 addToLists(job.getName(), time);

 }

}

– reordering the updates breaks the subclass!
– subclass is using total that includes the new job

RI not true in method call

Example 3: Tight Coupling

• RI can be false in calls to non-public methods
– only needs to hold at end of the public method

• Requires extra care to get it right
– method is tightly coupled with the ones that call it
– needs to know what is true in those methods

not enough to just know the RI

• Hard for multiple people to communicate this clearly
– can be okay when it’s all your code
– very error prone when methods are written by others

Subclassing Creates Tight Coupling

• Creates tight coupling between super- and sub-class
– direct field access can break subclass
– subclass dependent on which methods call each other
– subclass dependent no order of method class
– subclass can be called when RI is false

• Often see the “fragile base class” problem

• Subclassing is a surprisingly dangerous feature!
– up to you to verify subclass method specs are stronger
– up to you to prevent tight coupling

Subclassing is Best Avoided

• Java advice: either design for subclassing or prohibit it
– from Josh Bloch, author of (much of) the Java libraries

• We haven’t used subclassing in TypeScript
– didn’t even describe how to do it!

we’ve just used classes as a quick way to create records

– these problems are the main reason why we avoided it

• Subclassing is not necessary anyway
– we have other ways to share code

