
App and Data Design
Kevin Zatloukal

CSE 331

Component Modularity

Component Modularity

• Poor design to put all the app in one Component
– it works, but is lacks some properties of high quality
– better to break it into smaller pieces (modular)

• Two ways to the UI into separate components:

1. Separate parts that are next to each other

2. Separate parts on the screen at different times

Component Modularity

• Separate parts that are next to each other

class App extends Component<..> {
render = (): JSX.Element {

return (<div>
<TitleBar title={“My App”}/>

<SideBar/>

<MainBody/>
</div>);

};
}

SideBar

TitleBar

MainBody

Component Modularity

• Separate parts on the screen at different times

• App is always on the screen
– App chooses which child component to display

– sometimes it has an Editor child and sometimes not

Item Editor Item ListOR

Component Modularity

• Separate parts on the screen at different times

type AppState = {editing: boolean};

class App extends Component<{}, AppState> {

…
render = (): JSX.Element {

if (this.state.editing) {
return <ItemEditor item={this.state.item}/>;

} else {

return <ItemList/>;
}

};
…

}

Example: Quarter Picker

Writing a Full Stack App

Steps to Writing a Full Stack App

• Assume we know what the app should look like
– all different interactions are describe to us

• Then we can write it in the following order:

1. Write the server
– official store of the data (client state is ephemeral)
– only provide the operations needed by the client

2. Write the client UI with local data
– no client/server interaction at the start

3. Connect the client to the server
– use fetch to update data on the server

could swap these

Example: Auction Site

• Initial page shows user a list of auctions
– can also add their own

Current Auctions
• Oak Cabinet ends at 10pm
• Red Couch ends at 2pm tomorrow
• Blue Bicycle ends at 10pm tomorrow

can click on item name

Add can click on Add

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Show an error if the user:
• does not enter a name
• enters a non-number bid
• enters a bid smaller than the current bid

Current Bid: $250

Name

Bid

Fred

251 click Submit to bid

Example: Auction Site

• Clicking on an item shows the full details
– allows user to bid

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Don’t let users bid if the auction is over.

Instead, show who won the auction.

Final Bid: $250

Won By: Alice

Example: Auction Site

• Click on Add allows the user to start a new auction
– user provides the full details of the

New Auction

Start

Name

Min Bid

Bob

100

click Start to start auction

Ends At 100

Item Table Lamp

Description Beautiful vintage lamp. Perfect for
any room in your home. 20” x 12”

Writing the Server

App and Data Design

• Most applications are centered on data
– present data to the user
– allow them to manipulate the data and see the result

• App design is first and foremost data design
– first step is to decide what data to store
– then think about how to display it, change it, etc.

Data Before Code

Bad programmers worry about the code.
Good programmers worry about data
structures and their relationships.

-- Linus Torvalds

Show me your flowcharts and conceal your
tables, and I shall continue to be mystified.
Show me your tables, and I won’t usually
need your flowcharts; they’ll be obvious.

-- Fred Brooks

Entities & Operations

• Figure out what data to store by asking ourselves

1. What entities do we need to keep track of?
– become records or ADTs stored in the server
– what information do we need about each one?

2. What operations do we need to perform on them?
– become routes in the server
– typical operations

– list all the entities
– find entities with certain properties
– add an entity, remove an entity
– change an entity in some way (depends on the type of entity)

Example: To-Do List

1. What entities do we need to keep track of?
– items on the To Do List
– each one has a name and when it was completed

{name: string, completedAt: Date}

2. What operations do we need to perform on them?
– supported operations:

– list all the items
– add an item
– mark an item completed (change)
– no way to remove (happens automatically)

Example: Auction Site

1. What entities do we need to keep track of?

Example: Auction Site

1. What entities do we need to keep track of?

– what information do we need about each one?

Auctions

Example: Auction Site

1. What entities do we need to keep track of?

– what information do we need about each one?

Auctions

name of owner string
name of item string
description of item string
minimum bid number
ending time Date

what else?

got these from the
Add Auction UI

Example: Auction Site

1. What entities do we need to keep track of?

– what information do we need about each one?

Auctions

name of owner string
name of item string
description of item string
minimum bid number
ending time Date
highest bidder string
highest bid number

type Auction = {itemName: string, … };

Example: Auction Site

2. What operations do we need to perform on them?

Example: Auction Site

2. What operations do we need to perform on them?

• list all auctions
• add an auction
• bid on an auction (change)

got these from the UI

could also do
• get auction by name

Server Data Structures

• Start with the simplest data structure
– list or array of records

one record per entity

• Start concrete, not abstract
– ADTs introduce abstraction & complexity
– wait until the data structures are tricky to make an ADT

may not be necessary at all!
wait until you know it is too slow to change data structures

Server Data Structures

• Start with the simplest data structure
– list or array of records

one record per entity

• One option worth considering is using a Map
– TypeScript has Map<K, V> just like Java

key methods are get and set (see MDN for more)

– using a Map can be easier
no need to write a loop to find something!

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

Examples

• How should we store items in a To Do List app?

• How should we store items in our Auction app?

list or array of items

list or array of auctions

or map from item name to record
Map<string, Auction>

Testing the Server

• Write unit tests for each route / function

• Can also test manually
– type the URL into the browser and see the response

works only for GET requests
for POST, either change to GET temporarily or use a tool (e.g., curl)

More Realistic Data

• In practice, data is more complex
– many kinds of entities
– complex relationships between them
– complex invariants

• Useful tools for modeling these
– e.g., entity-relationship diagrams
– see 344 for more on that

More Realistic Servers

• In practice, can’t store user data on one machine
– machines break, hard drives fail, etc.

• Sharing state between servers is very complex
– requires even more sophisticated invariants
– see 452 for more on this

• Most apps use existing software for this
– relational or non-relational database of some kind
– see 344 for more on that

• App logic in server becomes purely functional!

Writing the Client

Design on the Client Side

• Design the server by thinking about entities & ops

• Designing the client is different
– component state is tightly coupled with UI on the screen
– must store state to render exactly what you see

• Design the client by thinking about what you see
– what component do you need to show that UI
– different “pages” require different components

also need a parent component that decides which one to show

Example: Auction UI

• Auction site had three different “pages”

Current Auctions
• Oak Cabinet ends at 10pm
• Red Couch ends at 2pm tomorrow
• Blue Bicycle ends at 10pm tomorrow

Add

Oak Cabinet
A beautiful solid oak cabinet. Perfect for
any bedroom. Dimensions are 42” x 60”.

Submit

Current Bid: $250

Name

Bid

Fred

251

New Auction
Name Bob

Item Table Lamp

…

Example: Auction UI

• Auction site had three different “pages”

• Need four different components:
– Auction List: shows all the auctions (and Add button)
– Auction Details: shows details on the auction (w Bid button)
– New Auction: lets the user describe a new auction

what else?

Example: Auction UI

• Auction site had three different “pages”

• Need four different components:
– Auction List: shows all the auctions (and Add button)
– Auction Details: shows details on the auction (w Bid button)
– New Auction: lets the user describe a new auction
– App: decides which of these pages to show

Example: Auction UI

• AuctionList.tsx
– state stores the full list of auctions

fetch this from the server when created

– “Add” goes back to the New Auction page
onAdd prop tells the App to switch to the auction list

– clicking on an auction goes to the Auction Details page
onShow prop tells the App to switch to the details of that auction

Example: Auction UI

• AuctionDetails.tsx
– state stores the details of the auction
– render shows the result of the auction or UI to bid
– “Submit” bid button makes a /bid request to the server

display an error or success message upon completion

– “Back” button goes back to the Auction List page
onBack prop tells the App to switch back to the auction list UI

Example: Auction UI

• NewAuction.tsx
– state stores all the data shown on the page

name, item, description, min bid, ends at

– “Start” button makes /new request to server
display an error or success message upon completion

– “Back” button goes back to the Auction List page
onBack prop tells the App to switch back to the auction list UI

Example: Auction UI

• App.tsx
– state says which page to be showing

type Page = “list” | “add” |

{kind: “details”, itemName: string};

type AppState = {page: Page};

class App extends Component<{}, AppState> { … }

– Page is an inductive data type of the “enum” variety

Example: Auction UI

• App.tsx
– render shows the appropriate UI

render = (): JSX.Element => {

if (this.state.page === “list”) {
return <AuctionList onAdd={this.handleAdd}

onShow={this.handleShow}/>;
} else if (this.state.page === “add”) {

return <NewAuction onBack={this.handleBack}/>;
} else {
return <AuctionDetails

itemName={this.state.page.itemName}
onBack={this.handleBack}/>;

}

};

Example: Auction UI

• App.tsx
– event handlers change what is shown

handleAdd = (): void => {

this.setState({page: “add”});
};

handleBack = (): void => {

this.setState({page: “list”});
};

handleShow = (itemName: string): void => {
this.setState({page: {kind: “details”,

itemName: itemName}});

};

