
Full Stack Apps
Kevin Zatloukal

CSE 331



Review: Stateful React Components

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {
constructor(props: HiProps) {

super(props);

this.state = {greeting: “Hi”};

}

render = (): JSX.Element {
return (<div>

<p>{this.state.greeting}, {this.props.name}!</p>
<button onClick={this.makeSpanish}>Espanol</button>

</div>);
};

makeSpanish = (evt: MouseEvent<HTMLButtonElement>) => {

this.setState({greeting: “Hola”});
};



React Components are Like ADTs

• Components have an invariant like an RI

HTML	on	screen	=	render(this.state)

– don’t want to be in a state where that is not true
unless you like painful debugging!

1. Do not mutate this.state (call setState)
React will update this.state and HTML on screen at the same time

2. Make sure no data on screen would disappear on re-render



Mirror All UI State in Component State

• Any state on the screen must be stored in some state
– text in any INPUT element must be in some state

type MyState = {text: string, …};

render = () => {
… <input type=“text” value={this.state.text}

onChange={this.onTextChanged}></input> …
};

onTextChanged = (

evt: ChangeEvent<HTMLInputElement>): void => {

this.setState({text: evt.target.value});
};

– updated on every character typed!
this is not slow (typing is very slow)



Example: To-Do List



React Gotchas #1

• Make sure you declare your methods this way

onClick = (evt: MouseEvent<HTMLButtonElement>) => { … };

– otherwise, the event handlers won’t work
– debugging that will be painful



React Gotchas #2

• Note that setState is not instant

// this.state.x is 2
this.setState({x: 3});
console.log(this.state.x);  // still 2!

– it adds an event that later updates the state
– (React tries to batch together multiple updates)



React Gotchas #3

• Any state on the screen must be stored in some state
– text in any INPUT element must be in some state

type MyState = {text: string, …};

render = () => {

… <input type=“text” value={this.state.text}
onChange={this.onTextChanged}></input> …

};



More React Gotchas

• Never modify anything in render
– should be a pure function

• Never modify this.state outside of constructor
– use this.setState instead

• Remember that debugging will suck
– stateful components are inherently complex (Level 3)
– separate anything complex into helper functions

reason through them carefully and test them thoroughly
can have helper function that calculates new states, HTML to display, ec.

– write code to also check things at run time



More Events



Events

• Components update their state when events occur
– event calls a “handler”, which is a method of the class
– event handler updates state via setState

• Some common examples
– button click, hyperlink click
– typing in text field
– check box clicked
– drop-down changed
– timers

• See MDN for all possible events…



Button Click Events

<button onClick={this.handleClick}>Click Me</button>

• Click results in a call to our method

handleClick = (evt: MouseEvent<HTMLButtonElement>) => {

console.log(“I’ve been clicked”);
};

• Event handlers are passed an event object
– mouse clicks send MouseEvent objects

generic type with a parameter identifying the target of the click



Link Click Events

<a href=“#” onClick={this.handleClick}>Click Me</a>

• Click results in a call to our method

handleClick = (evt: MouseEvent<HTMLAnchorElement>) => {

evt.preventDefault();  // don’t change the URL
console.log(“I’ve been clicked”);

};

• Default action of a link is to go to that URL
– harmless in this case (just adds “#” to the end of the URL)
– can stop that with evt.preventDefault()



Text Field Events

<input type=“text” value=“current text”
onChange={this.handleChange}></a>

• Any typing in the text box causes a call to

handleChange = (evt: ChangeEvent<HTMLInputElement>) => {
console.log(“Text is now: ${evt.target.value}”);

};

– evt.target is the thing that was clicked on
has type HTMInputElement in this case

– “value” attribute of the input text field is changing
– “value” is the text currently shown in the text field



Text Field Events

<input type=“text” value=“current text”
onChange={this.handleChange}></a>

• Any typing in the text box causes a call to

handleChange = (evt: ChangeEvent<HTMLInputElement>) => {
console.log(“Text is now: ${evt.target.value}”);

};

• This code has a bug! What is it?
– a re-render would overwrite value!



Text Field Events

<input type=“text” value={this.state.curText}
onChange={this.handleChange}></a>

• Any typing in the text field calls our change handler:

handleChange = (evt: ChangeEvent<HTMLInputElement>) => {
this.setState({curText: evt.target.value});

};

• We update curText to match the HTML on screen
– restores the invariant: HTML	on	screen	=	render(this.state)
– re-render leaves the screen unchanged

• Any text field should have state that stores its value



Check Box Events

<input type=“checkbox” id=“myCheckBox”
onChange={this.handleChange}/>

<label htmlFor=“myCheckBox”>laundry</label> 

• Clicking inside the box 

handleChange = (evt: ChangeEvent<HTMLInputElement>) => {

console.log(“Checked? ${evt.target.checked}”);

};

– evt.target.checked is true / false

• Label contains the text to show next to the check box
– htmlFor is useful for screen readers



Drop-Downs

<select>
<option value=“NA”>Pick a Quarter</option>

<option value=“20au”>Fall 2020</option>
<option value=“21sp”>Spring 2021</option>

</select> 

• HTML select element creates a drop-down
– one option for each choice
– text in between <option> and </option> is shown
– “value” is used by event handlers…



Drop-Downs (HTML Select)

<select onChange={this.handleChange}>
{options}

</select> 

• Picking an option causes an onChange

handleChange = (evt: ChangeEvent<HTMLSelectElement>) => {

console.log(“Picked option: ${evt.target.value}”);

};

– evt.target.value is the “value” from the option chosen
– “value” has type string



Timers

setTimeout(this.handleTimer, 500);

• Calls the handler after 500 milliseconds

handleTimer = () => {

console.log(“Timer went off!”);
};

– no arguments provided



Arguments to Event Handlers

• Often want to pass arguments to event handlers
– can do so like this:

setTimeout(() => this.handleTimer(“egg”), 500);

handleTimer = (name: string) => {
console.log(“${name} timer went off!”);

};

– creates a new function on the spot
– when called, that function calls handleTimer with the arg



Arguments to Event Handlers

• The same thing applies to all other event handlers, e.g.

<input type=“checkbox” id=“myCheckBox”

onChange={(evt) => this.handleChange(evt, “laundry”)}/>
<label htmlFor=“myCheckBox”>laundry</label>

handleChange = (evt: ChangeEvent<HTMLInputElement>, 
name: string) => {

console.log(“Done with ${name}? ${evt.target.checked}”);
};

– event handler takes the event and an argument
setTimeout, in contrast, does not pass an event objecvt



Example: To-Do List



Client & Server



Making HTTP Requests

• Send / receive data from the server with fetch

fetch(“/add?name=laundry”)
.then(this.handleServerResponse)

.catch(this.handleServerError)

– then handler is called if the request can be made
– catch handler is called if it cannot be

only if it could not connect to the server at all
status 400 still calls then handler

• Fetch returns a “Promise” object
– has then/catch methods
– then/catch methods return the object again

allows method calls to be chained in one expression like this



Making HTTP Requests

• Still need to check for a 200 status code

handleServerResponse = (res: Response) => {
if (res.status === 200) {
console.log(“it worked!”);

} else {
this.handleServerError(res);  // it failed

}

};

handleServerError = (res: Response) => {
console.log(“something bad happened”);

};

– (need to tell users about errors with some UI…)



Handling HTTP Responses

• Response has methods to get data returned by server
– res.json() if the server returned JSON (a record)
– res.text() if the server returned text (a string)
– sadly, these methods do not return record / string…

• Server response could be HUGE (gigabytes)
– may take a long time to download it all

• Methods above return Promises to get those things
– use then to add a handler that is called with the data



Making HTTP Requests

handleServerResponse = (res: Response) => {
if (res.status === 200) {

res.json().then(this.handleServerData);
.catch(this.handleServerError);

} else {
this.handleServerError(res); // it failed

}

};

• Second promise can also fail
– e.g., fails to parse as valid JSON, fails to download

• Important to catch every error
– painful debugging if an error occurs and you don’t see it!



Making HTTP Requests

handleServerResponse = (res: Response) => {
if (res.status === 200) {

res.json().then(this.handleServerData);
.catch(this.handleServerError);

} else {
this.handleServerError(res); // it failed

}

};

– type of returned data is unknown
– to be safe, we should write code to check that it looks right

check that the expected fields are present
check that the field values have the right types



HTTP GET vs POST

• When you type in a URL, browser makes “GET” request
– request to read something from the server

• Clients often want to write to the server also
– this is typically done with a “POST” request

ensure writes don’t happen just by normal browsing

• POST requests also send data to the server
– GET only sends data via query parameters
– limited to a few kilobytes of data
– POST requests can send arbitrary amounts of data



HTTP GET vs POST

• Extra parameter to fetch changes request type

fetch(”/add?name=laundry”, {method: ”POST”})

• Can optionally pass data to the server this way

fetch(”/add”, {
method: ”POST”, 

body: JSON.stringify({”name”: ”laundry”})

})

– may also need another field:
headers: {”Content-Type”: “application/json”}



Example: To-Do List 2.0


