
Stateful UI in React
Kevin Zatloukal

CSE 331

Administrivia

• HW7 released yesterday
– it is probably longer than HW5-6
– start early!

• Work through 3 versions of an ADT
– changing representations and specifications

• Finished all material on correctness
– tools, testing, reasoning, and defensive programming

proof by calculation, cases, induction
Floyd logic, arrays
AF and RI

Remaining Work

• Last four weeks include
– midterm and final exam
– HW8 and HW9 (full app on your own)

Recall: Array Loop Expectations

In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of Post
– problems of lower complexity

2. Write the code, given the invariant
– problems of moderate complexity

3. Check correctness, given code with invariant
– problems of higher complexity
– (not possible without invariant)

HW8–9

exams

Remaining Work

• HW8 and HW9 focus on practical skills
– build full stack apps
– some help in HW8
– no help in HW9

• Tests focus on theoretical knowledge
– e.g., checking correctness of complex loops
– midterm is practice for the final

covered all the material already (HW1–7)
midterm worth about the same points as HW8 & HW9

Midterm

• Midterm exam has 4 problems covering
1. Correctness of a complex loop
2. Writing a loop correctly given the invariant
3. Writing code correctly given no invariant
4. Testing a complex loop

• Study HW5-6 and related section material
– some other example tests on the web site
– not necessarily representative of our problems

tests are from other instructors, in different quarters

Stateful UI in React
(React Components)

UI in HW1-4

• UI so far was static
– index.tsx calls render to show a fixed UI

UI was different based on query params
but never changed once rendered

• Made the UI change by reloading the page
– change the query params, so it renders something different

UI in HW1-4

• Made the UI change by reloading the page
– change the query params, so it renders something different

const word = params.get(“word”);

if (word === null) {
root.render(<MakeForm/>);

} else {

root.render(<ShowResults word={word} ../>);
}

http://localhost:8080/ http://localhost:8080/?word=wooow&...

UI in HW1-4

• Reloading is not great as a user experience
– page reloads are slow
– page reloads can lose state (e.g., content of text fields)

• Better to re-render the page without a reload

React Functions

• React let us create custom tags
– e.g., from HW2

root.render(<SquareElem square={sq}/>);

– acts like the call

root.render(SquareElem({square: sq}));

– where SquareElem is function taking a record argument

function SquareElem(props: {square: Square}): JSX.Element

• HTML returned by the function is displayed
– “SquareElem” tag is in the HTML
– render spots it, calls the function, and replaces the tag

React Components

• Can do the same with a class (a React Component):

class HiElem extends Component<{name: string}, {}> {
render = (): JSX.Element => {
return <p>Hi, {this.props.name}</p>;

};
}

• Use via <HiElem name={“Fred”}/>
– React instantiates the class and calls its render method

• React calls render to get the HTML to display
– constructor stores argument in a field called “props”

props type is SqProps

React Components

• Can do the same with a class (a React Component):

type HiProps = {name: string};

class HiElem extends Component<HiProps, {}> {
render = (): JSX.Element {

return <p>Hi, {this.props.name}</p>;
};

}

• Can define a shorthand for the type

• Component is a generic type
– first type parameter is the type of “props”
– second type parameter is for “state”…

No sensible reason to make
Components without state

React Components

type HiProps = {name: string};
type HiState = {curName: string};

class HiElem extends Component<HiProps, HiState> {

constructor(props: HiProps) {
super(props);

this.state = {curName: this.props.name};
}

• Component is a generic type
– first component is type of this.props (readonly)
– second component is type of this.state

initial value set in the constructor
never directly modified after that

React Components

type HiProps = {name: string};
type HiState = {curName: string};

class HiElem extends Component<HiProps, HiState> {

render = (): JSX.Element {

return <p>Hi, {this.state.curName}</p>;
};

• render can use both this.props and this.state
– difference is that state can be changed

props never change

– React will automatically re-render when state changes
re-render happens shortly after the state change

React Components

type HiProps = {name: string};
type HiState = {curName: string};

class HiElem extends Component<HiProps, HiState> {

…
setName = (newName: string): void => {

this.setState({curName: newName});
};

}

• Must call setState to change the state
– directly modifying this.state is a (painful) bug

• React will automatically re-render when state changes
– this is the (only) reason to use a Component

React Components

type HiProps = {name: string};
type HiState = {curName: string};

class HiElem extends Component<HiProps, HiState> {

…
setName = (newName: string): void => {

this.setState({curName: newName});
};

}

• Must call setState to change the state
– directly modifying this.state is a (painful) bug

• Only need to supply the fields that have changed
– all the other fields will stay as they were before

React Components

type HiProps = {name: string};
type HiState = {curName: string};

class HiElem extends Component<HiProps, HiState> {

constructor(props: HiProps) {
super(props);

this.state = {curName: this.props.name};
}

render = (): JSX.Element {

return <p>Hi, {this.state.curName}</p>;
};

setName = (newName: string): void => {

this.setState({curName: newName});
};

}

React Components

type HiProps = {name: string};
type HiState = {curName: string};

class HiElem extends Component<HiProps, HiState> {

…
setName = (newName: string): void => {

this.setState({curName: newName});
};

}

• How could setName be called?
– typically happens in a handler for an HTML event

React Component with an Event Handler

• Pass method to be called as argument
– value of onClick attribute is our makeSpanish method

render = (): JSX.Element {

return (<div>

<p>{this.state.greeting}, {this.props.name}!</p>
<button onClick={this.makeSpanish}>Espanol</button>

</div>);

};

• Browser will invoke that method when button is clicked
makeSpanish = (evt: MouseEvent<HTMLButtonElement>) => {

this.setState({greeting: “Hola”});
};

– Call to setState causes a re-render (in a bit)

React Component with an Event Handler

type HiProps = {name: string};
type HiState = {greeting: string};

class HiElem extends Component<HiProps, HiState> {
constructor(props: HiProps) {

super(props);

this.state = {greeting: “Hi”};

}

render = (): JSX.Element {
return (<div>

<p>{this.state.greeting}, {this.props.name}!</p>
<button onClick={this.makeSpanish}>Espanol</button>

</div>);
};

makeSpanish = (evt: MouseEvent<HTMLButtonElement>) => {

this.setState({greeting: “Hola”});
};

React Components are Like ADTs

type HiProps = {name: string};
type HiState = {greeting: string};

• “Props” are part of the specification (arguments)
– public interface, used by clients

root.render(<Hi name={“Fred”}/>); // pass in name

• “State” is the concrete representation
– private choice of data structures, hidden from clients

constructor(props: HiProps) {
super(props);

this.state = {greeting: “Hi”}; // initial state
}

React Components are Like ADTs

• Can have RIs on state as well

// RI: 0 <= index < options.length
type OptionState = {
options: string[],
index: number

};

• Good idea to write a checkRep here also!

React Components are Level 3

• Like ADTs, methods are sharing state
– change in one method is read in other methods

• Debugging will be harder!

• Move complex parts into separate functions
– class is ideally just be render and simple event handlers

move everything complex into helper functions
e.g., calculation of new state can be a helper function

– harder to reason about and test Level 3, so keep it simple

• Write code to check your invariants
– ensure the new state is valid before calling setState

React Components are Like ADTs

• HTML on the screen is a (hidden) part of the state
– components work with React to manage this state

• render method is like an AF
– defines the correct HTML to display for the given state

• Components have an invariant like an RI

HTML	on	screen	=	render(this.state)

React Components are Like ADTs

HTML	on	screen	=	render(this.state)

t	=	10

Component React

this.state =	s1 doc	=	HTML1=	render(s1)

this.setState(s2)

doc	HTML2=	render(s2)

t	=	20

t	=	30 this.state =	s2

React updates this.state to s2 and doc to HTML2 simultaneously

React Components are Like ADTs

• Components have an invariant like an RI

HTML	on	screen	=	render(this.state)

– don’t want to be in a state where that is not true
unless you like painful debugging!

1. Do not mutate this.state (call setState)
React will update this.state and HTML on screen at the same time

2. Make sure no data on screen would disappear on re-render
More on this later…

Example: To-Do List

