
Servers & Routes
Kevin Zatloukal

CSE 331

Servers & Routes

Client-Side JavaScript

• Code so far has run inside the browser
– webpack-dev-server handles HTTP requests
– sends back our code to the browser

• In the browser, executes the code of index.tsx
– calls root.render to produce the UI

HTTP GET

index.html
index.tsx etc.

webpack-dev-server

Server-Side JavaScript

• Can run code in the server as well
– return different data for each request

data could be HTML, JSON, etc.

– “node” executes the code of index.ts

• Will have code in both browser and server
– only writing server-side code in HW6

HTTP GET

response data

our server

Custom Server

• Create a custom server as follows:

function F(req: Request, res: Response): void {

…
}

const app = express();

app.get(“/foo”, F);

app.listen(8080);

– request for http://localhost:8080/foo will call F
– mapping from “/foo” to F is called a “route”
– can have as many routes as we want (with different URLs)

http://localhost:8080/foo

Custom Server

• Query parameters (e.g., ?name=Fred) in Request

function F(req: Request, res: Response): void {

const name: string|undefined = req.query.name;
if (name === undefined) {

res.status(400).send(“Missing ‘name’”);
return;

}

… // name was provided
}

– set status to 400 to indicate a client error (Bad Request)
– set status to 500 to indicate a server error
– default status is 200 (OK)

Custom Server

• Query parameters (e.g., ?name=Fred) in Request

function F(req: Request, res: Response): void {

const name: string|undefined = req.query.name;
if (name === undefined) {

res.status(400).send(“Missing ‘name’”);
return;

}

res.send({message: `Hi, ${name}`});
}

– send of string returned as text/HTML
– send of record returned as application/JSON

Server-Side JavaScript

• Apps will make sequence of requests to server
– e.g., in HW6:

GET /new

{text: “What is your …?”}

our server
GET /check?answer=blue

{correct: false}

GET /check?answer=yellow

{correct: true}

Example App

User types “blue” and presses “Submit”…

“Network” Tab Shows Requests

• Shows every request to the serve
– first request loads the app (as usual)
– “new” is a request to get a question
– “check?answer=blue” is a request to check answer

• Click on a request to see details…

“Network” Tab Shows Request & Response

JSON

• JavaScript Object Notation
– text description of JavaScript object
– allows strings, numbers, null, arrays, and records

no undefined and no instances of classes
no ‘..’ (single quotes), only “..”
requires quotes around keys in records

– another tree!

• Translation into string done automatically by send

res.send({index: 0, text: ’What is your …?’});

Testing Server-Side TypeScript

• A route calls an ordinary function

• Testing is the same as on the client side
– write unit tests in X_test.ts files
– run then using npm run test

• Libraries help set up Request & Response for tests
– can check the status returned was correct

e.g., 200 or 400

– can check the response body was correct
e.g., “Missing ‘name’” or {message: “Hi, Fred”}

Testing Server-Side TypeScript

• A route calls an ordinary function

• Client- and server-side code is made up of functions
– server functions handles requests for specific URLs
– client functions draw data, create requests, etc.
– test (and code review) each one

• Key Point: unit test each function thoroughly
– often hard to figure which part caused the failure

e.g., did the server return an error because of a server bug or a bad request?

– much easier to debug failing tests than errors in the app

Functions with Mutations

Specifying Functions that Mutate

• Our functions so far have not mutated anything
that makes things much simpler!

• Cannot yet write a spec for sorting an array
– could return a sorted version of the array
– but cannot say that we change the array to be sorted

• Need some new tags to describe that…

Specifying Functions that Mutate

• By default, no parameters are mutated
– must explicitly say that mutation is possible (default not)

/**

* Reorders A so the numbers are in increasing order

* @param A array of numbers to be sorted
* @modifies A
* @effects A contains the same numbers but now in
* increasing order

*/
quickSort(A: number[]): void { .. }

– anything that might be changed is listed in @modifies
not a promise to modify it — A could already be sorted!
a shorter modifies list is a stronger specification

Specifying Functions that Mutate

• By default, no parameters are mutated
– must explicitly say that mutation is possible (default not)

/**

* Reorders A so the numbers are in increasing order

* @param A array of numbers to be sorted
* @modifies A

* @effects A contains the same numbers but now in
* increasing order
*/
function quickSort(A: number[]): void { .. }

– @effects gives promises about result after mutation
like @returns but for mutated values, not return value
this returns void, so no @returns

Mutating Arrays

• Assigning to array elements changes known state

{{	A[j	– 1]	<	A[j]	for	any	1	≤	j	≤	5	}}
A[0] = 100;

{{	A[0]	=	100	and	A[j	– 1]	<	A[j]	for	any	2	≤	j	≤	5	}}

• Can add to the end of an array

A.push(100);

{{	A	=	A0⧺	[100]	}}

• Can remove from the end of an array

A.pop();

{{	A	=	A0[0	..	n	– 2]	}} A has one fewer element than before

Example Mutating Function

• Reorder an array so that
– negative numbers come first, then zeros, then positives

(not necessarily sorted)

/**
* Reorders A into negatives, then 0s, then positive
* @modifies A
* @effects leaves same numbers in A but with
* A[j] < 0 for 0 <= j < i
* A[j] = 0 for i <= j < k
* A[j] > 0 for k <= j < n
* @returns the indexes (i, k) above
*/
function sortPosNeg(A: number[]): [number,number]

Example: Sorting Negative, Zero, Positive

// @effects leaves same numbers in A but with
// A[j] < 0 for 0 <= j < i
// A[j] = 0 for i <= j < k
// A[j] > 0 for k <= j < n

Let’s implement this…

< 0 = 0 > 0

i k n0

Example: Sorting Negative, Zero, Positive

How should we weaken this for the invariant?
– needs allow elements with unknown values

initially, we don’t know anything about the array values

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0?

< 0 = 0 > 0 ?

Example: Sorting Negative, Zero, Positive

Our Invariant:

A[ℓ]	<	0	for	any	0 ≤ ℓ <	i
A[ℓ]	=	0	for	any	i ≤ ℓ <	j
(no	constraints	on	A[ℓ]	for	j	≤ ℓ <	k)
A[ℓ]	>	0	for	any	k ≤ ℓ <	n

< 0 = 0 > 0

i k n0

?

j

Example: Sorting Negative, Zero, Positive

• Let’s try figuring out the code (problem type 2)
– on homework, this would be type 3 (check correctness)

• Figure out the code for
– how to initialize
– when to exit
– loop body

< 0 = 0 > 0

i k n0

?

j

?

Example: Sorting Negative, Zero, Positive

• Will have variables i, j, and k with i ≤ j	<	k

• How do we set these to make it true initially?
– we start out not knowing anything about the array values
– set i =	j	=	0 and k	=	n

< 0 = 0 > 0

i k n0

?

j

i k
n0

j

Example: Sorting Negative, Zero, Positive

• Set i =	j	=	0 and k	=	n to make this hold initially

• When do we exit?
– purple is empty if j	=	k

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i
k

n0 j

Sort Positive, Zero, Negative

let i: number = 0;
let j: number = 0;

let k: number = A.length;

{{ Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

while (j !== k) {

...
}

{{ A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	j	≤	ℓ <	n }}

return [i, j];

Example: Sorting Negative, Zero, Positive

• How do we make progress?
– try to increase j by 1 or decrease k by 1

• Look at A[j] and figure out where it goes

• What to do depends on A[j]
– could be <	0, =	0, or >	0

< 0 = 0 > 0

i k n0

?

j

Example: Sorting Negative, Zero, Positive

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

< 0 = 0 > 0

i k n0

?

j

Set j	=	j0+	1

Swap A[i] and A[j]
Set i =	i0+	1
and j	=	j0+	1

Swap A[j] and A[k–1]
Set k	=	k0 – 1

Sort Positive, Zero, Negative

{{ Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

while (j !== k) {
if (A[j] === 0) {

j = j + 1;
} else if (A[j] < 0) {

swap(A, i, j);
i = i + 1;

j = j + 1;
} else {

swap(A, j, k);

k = k – 1;
}

}

Combine forward and backward
reasoning to double check correctness.

Sort Positive, Zero, Negative

{{ Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

while (j !== k) {
…

} else if (A[j] < 0) {
{{	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n	and	A[j]	<	0 }}

swap(A, i, j);

i = i + 1;
j = j + 1;

{{	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

}
…

Sort Positive, Zero, Negative

{{ Inv:	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

while (j !== k) {
…

} else if (A[j] < 0) {
{{	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n	and	A[j]	<	0 }}

swap(A, i, j);

{{	A[ℓ]	<	0	for	any	0	≤	ℓ <	i+1 and	A[ℓ]	=	0	for	any	i+1	≤	ℓ <	j+1
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

i = i + 1;

j = j + 1;

{{	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

}

…

Sort Positive, Zero, Negative

{{	A[ℓ]	<	0	for	any	0	≤	ℓ <	i and	A[ℓ]	=	0	for	any	i ≤	ℓ <	j
A[ℓ]	>	0	for	any	k	≤	ℓ <	n	and	A[j]	<	0 }}

swap(A, i, j);

{{	A[ℓ]	<	0	for	any	0	≤	ℓ <	i+1 and	A[ℓ]	=	0	for	any	i+1	≤	ℓ <	j+1
A[ℓ]	>	0	for	any	k	≤	ℓ <	n }}

Easiest to stop here since this is a function call. (Need to use its spec.)

Step 1: What facts are new in the bottom assertion?

New facts are A[i]	<	0				and A[j]	=	0

Initially have A[i]	=	0				and A[j]	<	0

Swapping them gives what we want.

Other 2 cases are similar… (Exercise)

