
Array Loop Heuristics
Kevin Zatloukal

CSE 331

Recall: Sum of an Array

func sum([]) :=	0
sum(A	⧺	[y]) :=	sum(A)	+	y for	any	y	:	ℤ	and	A	:	Arrayℤ

• Loop implementation:

let j: number = 0;
let s: number = 0;

{{	Inv:	s	=	sum(A[0	..	j	– 1])	and	j	≤	A.length }}
while (j !== A.length) {

s = s + A[j];

j = j + 1;
}

{{	s	=	sum(A)	}}
return s;

Recall: Linear Search of an Array

func contains([],	x)	 :=	F
contains(A	⧺	[y],	x) :=	T if	x	=	y
contains(A	⧺	[y],	x) :=	contains(A,	x) if	x	≠	y

• Loop implementation:

let j: number = 0;

{{	Inv:	contains(A[0	..	j–1],	x)	=	F	}}
while (j != A.length) {

if (A[j] === x)

{{	contains(A,	x)	=	T	}}
return true;

j = j + 1;
}

{{	contains(A,	x)	=	F	}}
return false;

Loop Invariants with Arrays

• Saw two more examples last lecture

{{	Inv:	s	=	sum(A[0	..	j	– 1])	and	j	≤	A.length }} sum of array
{{	Post:	s	=	sum(A[0	..	n	– 1])	}}

{{	Inv:	contains(A[0	..	j	– 1],	x)	=	F	}} search an array
{{	Post:	contains(A[0	..	n	– 1],	x)	=	F	}}

– in both cases, Post is a special case of Inv (where j	=	n)
– in other words, Inv is a weakening of Post

• Heuristic for loop invariants: weaken the postcondition
– assertion that allows postcondition as a special case
– must also allow states that are easy to prepare

Heuristic for Loop Invariants

• Loop Invariant allows both start and stop states
– describing more states = weakening

{{	P	}}
{{	Inv:	I	}}
while (cond) {
S

}
{{	Q	}}

– usually are many ways to weaken it…

QIP

Searching a Sorted Array

• Suppose we require A to be sorted:
– precondition includes

A[j–1]	≤	A[j]	for	any	1	≤	j	<	n (where n	:=	A.length)

• Want to find the index k where “x” is / would be put
– postcondition written as

A[j]	<	x	for	any	0	≤	j	≤	k	– 1	and	x	≤	A[j]	for	any	k	≤	j	<	n

– index k is where x must be if it is present
everything from A[0] to A[k	– 1] is smaller than x
everything after A[k] is even bigger than A[k]

Searching a Sorted Array

A[j]	<	x for	any	0	≤	j	<	k	 and x	≤	A[j] for	any	k	≤	j	<	n

• End with complete knowledge of A[j] vs x
– how can we describe partial knowledge?

A[j]	<	x for	any	0	≤	j	<	k

0 k n

A

0 n

A

k

Searching a Sorted Array

// @returns true if A[j] = x for some 0 <= j < n
// false if A[j] != x for any 0 <= j < n

• Loop implementation:

let k: number = 0;

{{	Inv:	A[j]	<	x	for	any	0 ≤	j	<	k }}
while (k !== A.length && A[k] <= x) {
if (A[k] === x) {

return true;

} else {
k = k + 1;

}
}

return false;

Searching a Sorted Array

let k: number = 0;

{{	k	=	0	}}
{{	Inv:	A[j]	<	x	for	any	0 ≤	j	<	k }}
while (k !== A.length && A[k] <= x) {

if (A[k] === x) {
return true;

} else {

k = k + 1;
}

}
return false;

What is the claim when k	=	0?

A[j]	<	x	for	any	0 ≤	j	<	0

What values of j satisfy 0 ≤	j	<	0?

None. Nothing is claimed.

Statement is (vacuously) true when k	=	0

With “for any” facts, we need to think about
exactly what facts are being claimed.

Searching a Sorted Array

let k: number = 0;

{{	Inv:	A[j]	<	x	for	any	0 ≤	j	<	k }}
while (k !== A.length && A[k] <= x) {
if (A[k] === x) {

return true;
} else {

k = k + 1;

}
}

{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	(k	=	n	or	A[k]	>	x) }}
{{	A[j]	≠	x	for	any	0 ≤	j	<	n }}
return false;

Top assertion has an “or”, so we argue by cases.

Searching a Sorted Array

while (k !== A.length && A[k] <= x) {
if (A[k] === x) {

return true;
} else {

k = k + 1;
}

}
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	(k	=	n	or	A[k]	>	x)	}}
{{	A[j]	≠	x	for	any	0 ≤	j	<	n }}
return false;

Know that A[j]	<	x	for	any	0 ≤	j	<	n		 (since k	=	n)

Case k	=	n	(=	A.length):

This means A[j]	≠	x	for	any	0 ≤	j	<	n		 (since A[j]	<	x	implies	A[j]	≠	x)

Searching a Sorted Array

while (k !== A.length && A[k] <= x) {
if (A[k] === x) {

return true;
} else {

k = k + 1;
}

}
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	(k	=	n	or	A[k]	>	x)	}}
{{	A[j]	≠	x	for	any	0 ≤	j	<	n }}
return false;

Know that A[j]	<	x	for	any	0 ≤	j	<	k	and	x	<	A[k]

Case x	<	A[k]:

Precondition (sorted) says A[k]	≤ A[k+1]	≤		…

Know that A[j]	<	x	for	any	0 ≤	j	<	k	and	A[j]	>	x	for	any	k ≤	j	<	n

This means A[j]	≠	x	for	any	0 ≤	j	<	n

Searching a Sorted Array

while (k !== A.length && A[k] <= x) {
if (A[k] === x) {

return true;
} else {

k = k + 1;
}

}
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	(k	=	n	or	A[k]	>	x)	}}
{{	A[j]	≠	x	for	any	0 ≤	j	<	n }}
return false;

Since one of the cases k	=	n and x	<	A[k] must hold,
we have shown that

A[j]	≠	x	for	any	0 ≤	j	<	n

holds in general.

Searching a Sorted Array

let k: number = 0;

{{	Inv:	A[j]	<	x	for	any	0 ≤	j	<	k }}
while (k !== A.length && A[k] <= x) {
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	k	≠ n	and	A[k]	≤	x }}
if (A[k] === x) {
return true;

} else {

k = k + 1;
}

{{	A[j]	<	x	for	any	0 ≤	j	<	k }}
}

return false;

Searching a Sorted Array

{{	Inv:	A[j]	<	x	for	any	0 ≤	j	<	k }}
while (k !== A.length && A[k] <= x) {
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	k	≠ n	and	A[k]	≤	x }}
if (A[k] === x) {
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	k	≠ n	and	A[k]	≤	x	and	A[k]	=	x }}
{{	A[j]	=	x	for	some	0 ≤	j	<	n }}
return true;

} Is this true?

Yes! It holds for j	=	k

Searching a Sorted Array

{{	Inv:	A[j]	<	x	for	any	0 ≤	j	<	k }}
while (k !== A.length && A[k] <= x) {
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	k	≠ n	and	A[k]	≤	x }}
if (A[k] === x) {

return true;
} else {
{{	A[j]	<	x	for	any	0 ≤	j	<	k	and	k	≠ n	and	A[k]	≤	x	and	A[k]	≠	x }}
{{	A[j]	<	x	for	any	0 ≤	j	<	k+1	}}
k = k + 1;

{{	A[j]	<	x	for	any	0 ≤	j	<	k }}
}

{{	A[j]	<	x	for	any	0 ≤	j	<	k }}
}

return false;

Step 1: What facts need proof?

Only A[k]	<	x

Already know A[j]	<	x	for	j	=	0	..	k–1

Step 2: A[k]	<	x follows from A[k]	≤	x	and	A[k]	≠	x

Loops Invariants with Arrays

• Loop invariants often have lots of facts
– recursion has fewer

• Much of the work is just keeping track of them
– “dynamic programs” (421) are often like this
– common to need to write these down

more likely to see line-by-line reasoning on hard problems

Loops Invariants with Arrays

Implications btw “for any” facts are proven in two steps:

1. Figure out what facts are not already known

2. Prove just those “new” facts

Another Example:

{{	A[j]	<	x	for	any	0 <	j	<	k	}}	versus
{{	A[j]	<	x	for	any	0 ≤	j	<	k	}}
– only need to prove A[0]	<	x

Finding Loop Invariants

• Loop invariant is often a weakening of postcondition

{{	Inv:	s	=	sum(A[0	..	j	– 1])	and	j	≤	A.length }} sum of array
{{	Post:	s	=	sum(A[0	..	n	– 1])	}}

{{	Inv:	contains(A[0	..	j	– 1],	x)	=	F	}} search an array
{{	Post:	contains(A[0	..	n	– 1],	x)	=	F	}}

{{	Inv:	A[j]	<	x	for	any	0 ≤	j	<	k }} search a
{{	Post:	A[j]	≠	x	for	any	0 ≤	j	<	n }} sorted array

Loop Invariants

• Algorithm Idea includes
– how you will get form start to stop state
– what partial progress looks like

• Algorithm Idea formalized in
– invariant
– progress step (e.g., j	=	j	+	1)

QIP

Array Loop Expectations

In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of postcondition
– problems of lower complexity

2. Write the code, given the invariant
– problems of moderate complexity

3. Check correctness, given code with invariant
– problems of higher complexity
– (not possible without invariant)

Array Loop Expectations

• In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of postcondition
– problems of lower complexity
– typical examples:

{{	Inv:	s	=	sum(A[0	..	j	– 1])	and	j	≤	A.length }} sum of array
{{	Post:	s	=	sum(A[0	..	n	– 1])	}}

{{	Inv:	contains(A[0	..	j	– 1],	x)	=	F	}} search an array
{{	Post:	contains(A[0	..	n	– 1],	x)	=	F	}}

From Invariant to Code (Problem Type 2)

• Algorithm Idea formalized in
– invariant
– progress step (e.g., j	=	j	+	1)

From invariant to code:
1. Write code before loop to make Inv hold initially
2. Write code inside loop to make Inv hold again
3. Choose exit so that “Inv	and	not	cond” implies postcondition

QIP

Max of an Array (Problem Type 2)

• Calculate a number “m” that is the max in array A

• Use the following invariant:
– m is the maximum of A[0	..	k–1], i.e.,

A[j]	≤ m	for	any	0 ≤	j	<	k m is bigger than A[0],	..,	A[k-1]
A[j]	=	m	for	some	0 ≤	j	<	k m is one of A[0],	..,	A[k-1]

• Invariant references “m” and “k”
– these will be variables in the code

Max of an Array (Problem Type 2)

{{	Pre:	n	=	A.length >	0	}}
let k: number = …

let m: number = …

{{	Inv:	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
while (_________) {

…

}

{{	Post:	A[j]	≤ m	for	any	0 ≤	j	<	n	and	A[j]	=	m	for	some	0 ≤	j	<	n	}}
return m;

What’s an easy way to make this hold?
m	=	A[0] and k	=	1

Max of an Array (Problem Type 2)

{{	Pre:	n	=	A.length >	0	}}
let k: number = 1;

let m: number = A[0];

{{	Inv:	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
while (_________) {

…

k = k + 1;
}

{{	Post:	A[j]	≤ m	for	any	0 ≤	j	<	n	and	A[j]	=	m	for	some	0 ≤	j	<	n	}}
return m;

What extra fact would make this match Post?
k	=	n

Max of an Array (Problem Type 2)

{{	Pre:	n	=	A.length >	0	}}
let k: number = 1;

let m: number = A[0];

{{	Inv:	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
while (k !== n) {

…

k = k + 1;
}

{{	Post:	A[j]	≤ m	for	any	0 ≤	j	<	n	and	A[j]	=	m	for	some	0 ≤	j	<	n	}}
return m;

Max of an Array (Problem Type 2)

{{	Pre:	n	=	A.length >	0	}}
let k: number = 1;

let m: number = A[0];

{{	Inv:	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
while (k !== n) {

{{	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
…
k = k + 1;

{{	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
}

{{	Post:	A[j]	≤ m	for	any	0 ≤	j	<	n	and	A[j]	=	m	for	some	0 ≤	j	<	n	}}
return m;

Max of an Array (Problem Type 2)

{{	Pre:	n	=	A.length >	0	}}
let k: number = 1;

let m: number = A[0];

{{	Inv:	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
while (k !== n) {

{{	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
…
{{	A[j]	≤ m	for	any	0 ≤	j	<	k+1	and	A[j]	=	m	for	some	0 ≤	j	<	k+1	}}
k = k + 1;
{{	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}

}

{{	Post:	A[j]	≤ m	for	any	0 ≤	j	<	n	and	A[j]	=	m	for	some	0 ≤	j	<	n	}}
return m;

Max of an Array (Problem Type 2)

{{	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
…

{{	A[j]	≤ m	for	any	0 ≤	j	<	k+1	and	A[j]	=	m	for	some	0 ≤	j	<	k+1	}}

Step 1: What facts are new in the bottom assertion?

Just A[k]	≤ m

Note that second part is weakened
from A[j]	=	m	for	some	0 ≤	j	<	k

to A[j]	=	m	for	some	0 ≤	j	<	k+1

Now, we can have A[k]	=	m, when we couldn’t before.

What code do we write to ensure A[k]	≤ m?

Max of an Array (Problem Type 2)

while (k != n) {
{{	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
if (A[k] > m)
m = A[k];

{{	A[j]	≤ m	for	any	0 ≤	j	<	k+1	and	A[j]	=	m	for	some	0 ≤	j	<	k+1	}}
k = k + 1;

}

Step 1: What facts are new in the bottom assertion?

Just A[k]	≤ m

Else branch happens if A[k]	≤ m

Then branch makes that true by setting m	=	A[k]
Still have A[j]	=	m	for	some	j, namely, j	=	k

Max of an Array (Problem Type 2)

{{	Pre:	n	=	A.length >	0	}}
let k: number = 0;

let m: number = A[0];

{{	Inv:	A[j]	≤ m	for	any	0 ≤	j	<	k	and	A[j]	=	m	for	some	0 ≤	j	<	k	}}
while (k != n) {

if (A[k] > m)

m = A[k];
k = k + 1;

}

{{	Post:	A[j]	≤ m	for	any	0 ≤	j	<	n	and	A[j]	=	m	for	some	0 ≤	j	<	n	}}
return m;

Array Loop Expectations

In 331, expect you to (eventually) be able to

1. Write invariant that is a simple weakening of postcondition
– problems of lower complexity

2. Write the code, given the invariant
– problems of moderate complexity

3. Check correctness, given code with invariant
– problems of higher complexity
– (not possible without invariant)

Searching a Sorted Array (Take Two)

A[j]	<	x for	any	0	≤	j	<	k	 and x	≤	A[j] for	any	k	≤	j	<	n

• End with complete knowledge of A[j] vs x
– how can we describe partial knowledge?

A[j]	<	x for	any	0	≤	j	<	i and x	≤	A[j] for	any	k	≤	j	<	n

0 k n

A

0 k n

A

i

