CSE 331

Floyd Logic

Kevin Zatloukal

Administrivia

- Reasoning problems are harder in HW4
- more sophisticated data types (trees) need more reasoning
- True in general for programming
- the harder the problem, the more work is "on paper" (more time thinking, less time typing)
- Start early on HW4
- ask questions if you get stuck

Reasoning So Far

- Code so far made up of three elements
- straight-line code
- conditionals
- recursion
- Have seen how to reasoning about each

Reasoning About Straight-Line Code

```
// @param n an integer with n >= 1
// @returns an integer m with m >= 0
function f(n: number): number {
    const a = n + 1;
    const b = n - 1;
    return a * b;
}
```

- Prove an implication
- show $\mathrm{ab} \geq 0$ follows from $\mathrm{n} \geq 1$ and $\mathrm{a}=\mathrm{n}+1$ and $\mathrm{b}=\mathrm{n}-1$
- proof is a calculation

Reasoning About Straight-Line Code

```
// @param n an integer with n >= 1
// @returns an integer m with m >= 0
function f(n: number): number {
const a = n + 1;
const b = n - 1;
return a * b;
}
```

- Prove an implication

$$
\begin{aligned}
\mathrm{ab} & =(n+1) b \\
& =(n+1)(n-1) \\
& =n^{2}-1 \\
& \geq 1-1 \\
& =0
\end{aligned}
$$

Reasoning About Conditionals

```
// @returns an integer m with m >= a, m >= b, and
function max(a: number, b: number): number {
    if (a >= b) {
        return a;
    } else {
        return b;
    }
}
```

- Prove implications for each return statement
- then return: show $\mathrm{a} \geq \mathrm{a}$ and $\mathrm{a} \geq \mathrm{b}$ follow from $\mathrm{a} \geq \mathrm{b}$
- else return: show $b \geq a$ and $b \geq b$ follow from $a<b$
- proofs are calculations

Reasoning About Recursion

```
// @param n a natural number
// @returns n*n
function square(n: number): number {
    if (n === 0) {
        return 0;
    } else {
        return square(n - 1) + n + n - 1;
    }
}
```

func square(0) $\quad:=0$
square $(n+1):=\operatorname{square}(n)+2(n+1)-1 \quad$ for any $n: \mathbb{N}$

- Need to prove that square(n) $=\mathrm{n}^{2}$ for any $\mathrm{n}: \mathbb{N}$

Reasoning About Recursion

```
func square(0) := 0
    square(n+1) := square(n) + 2(n+1)-1 for any n : N
```

- Prove that square(n) $=\mathrm{n}^{2}$ for any $\mathrm{n}: \mathbb{N}$
- Structural induction requires proving two implications
- base case: prove square $(0)=0^{2}$
- inductive step: prove square $(\mathrm{n}+1)=(\mathrm{n}+1)^{2}$ can use the fact that square $(\mathrm{n})=\mathrm{n}^{2}$

```
type \mathbb{N}:= 0
    | n+1 for any n:\mathbb{N}
```


Reasoning About Recursion

```
// @param n a natural number
// @returns n*n
function square(n: number): number {
    if (n === 0) {
        return 0;
    } else {
        return square(n - 1) + n + n - 1;
    }
}
```

- Inductive step

$$
\begin{aligned}
\operatorname{square}(n+1) & =\text { square }(n)+2(n+1)-1 & & \text { def of square } \\
& =n^{2}+2(n+1)-1 & & \text { Ind. Hyp. } \\
& =n^{2}+2 n+1 & & \\
& =(n+1)^{2} & &
\end{aligned}
$$

Reasoning So Far

- Code so far made up of three elements
- straight-line code
- conditionals
- recursion
- Any ${ }^{1}$ program can be written with just these
- we could stop the course right here
- For performance reasons, we often use more
- this week: mutation of local variables
- next week: mutation of heap data
${ }^{1}$ only exception is code with infinite loops

Brief History of Software

- Computers used to be very slow
my first computer had 64k of memory
- Software had to be extremely efficient
- loops, mutation all over the place
- very hard to write correctly, so they did very little
- Software "eats the world"
- much larger programs
- correctness gets even harder
- Trade computer efficiency for programmer efficiency
- e.g., React / angular UI tries to be functional
- e.g., operating systems restrict use of heap data
- e.g., web workers use message passing, not locks

Brief History of Software

- Computers used to be very slow
- Software had to be extremely efficient
- Software gets much larger
- Trade computer efficiency for programmer efficiency
- e.g., React / angular programs being more functional
- e.g., operating systems restrict use of heap data
- Anti-pattern: focusing too much on efficiency
- programmers are overconfident about correctness
- programmers overestimate importance of efficiency "programmers are notoriously bad" at guessing what is slow - B. Liskov "premature optimization is the root of all evil" - D. Knuth

Correctness Levels

Level	Description	Testing	Tools	Reasoning
-1	small \# of inputs	exhaustive		
0	straight from spec	heuristics	type checking	code reviews
1	no mutation	"	libraries	calculation induction
2	local variable mutation	"		" Floyd logic
3	array / object mutation	"		?

Mutation of Local Variables

```
// @param n an integer with n >= 1
function g(n: number): number {
        \longleftarrow
    n = n - 1;
                        n}\geq1\mathrm{ 1? No!
}
```

- Facts no longer hold throughout the function
- When we state a fact, we have to say where it holds

Mutation of Local Variables

```
// @param n an integer with n >= 1
function g(n: number): number {
    {{n\geq1}}
    {{n\geq1}}
    n = n - 1;
    {{n\geq0}}
}
```

- When we state a fact, we have to say where it holds
- \{\{ .. \}\} notation indicates facts true at that point
- cannot assume those are true anywhere else

Mutation of Local Variables

```
// @param n an integer with n >= 1
function g(n: number): number {
    {{n\geq1}}
    {{n\geq1}}
    n = n - 1;
    {{n\geq0}}
}
```

- There are mechanical tools for deriving these
- precondition is true at the top of the function (by definition)
- "forward reasoning" says how this changes as we move down
- "backward reasoning" says how facts change as we move up

Mutation of Local Variables

```
// @param n an integer with n >= 1
function g(n: number): number {
    {{n\geq1}}
    {{n\geq1}}
    n = n - 1;
    {{n\geq0}}
}
```

- Professionals are incredibly good at forward reasoning
- "programmers are the Olympic athletes of forward reasoning"
- you'll have an edge by learning backward too

Floyd Logic

Floyd Logic

- Invented by Robert Floyd and Sir Anthony Hoare
- Floyd won the Turing award in 1978
- Hoare won the Turing award in 1980

Robert Floyd

Tony Hoare

Floyd Logic Terminology

- The program state is the values of the variables
- An assertion (in $\{\{$.. \}\}) is a T/F claim about the state
- an assertion "holds" if the claim is true
- assertions are math not code
(we do our reasoning in math)
- Most important assertions:
- precondition: claim about the state when the function starts
- postcondition: claim about the state when the function ends

Hoare Triples

- A Hoare triple has two assertions and some code
$\{\{P\}\}$
s
$\{\{Q\}\}$
- P is the precondition, Q is the postcondition
$-S$ is the code
- Triple is "valid" if the code is correct:
- S takes any state satisfying P into a state satisfying Q does not matter what the code does if P does not hold initially
- otherwise, the triple is invalid

Hoare Triples with No Code

- Code could be empty:

$$
\begin{aligned}
& \{\{P\}\} \\
& \{\{Q\}\}
\end{aligned}
$$

- When is such a triple valid?
- valid $=\mathbf{Q}$ follows from P
- checking validity without code is proving an implication we already know how to do this!
- We often say "P is stronger than Q "
- synonym for P implies Q
- weaker if Q implies P

Stronger Assertions vs Specifications

- Assertion is stronger iff it holds in a subset of states

- Specification is stronger iff
- postcondition is stronger
- precondition is weaker
allows more inputs

Hoare Triples with Multiple Lines of Code

- Code with multiple lines:

$$
\begin{gathered}
\{\{P\}\} \\
S \\
\{\{R\}\} \\
T \\
\{\{Q\}\}
\end{gathered}
$$

- Valid iff there exists an R making both triples valid
- i.e., $\{\{P\}\} S\{\{R\}\}$ is valid and $\{\{R\}\} T\{\{Q\}\}$ is valid
- Will see next how to put these to good use...

Mechanical Reasoning Tools

- Forward / backward reasoning fill in assertions
- mechanically create valid triples
- Forward reasoning fills in postcondition

$$
\{P\} S\{\ldots\}
$$

- gives strongest postcondition making the triple valid
- Backward reasoning fills in precondition

$$
\{\ldots\} S\{Q\}
$$

- gives weakest precondition making the triple valid

Correctness via Forward Reasoning

- Apply forward reasoning to fill in R

- first triple is always valid
- only need to check second triple
just requires proving an implication (since no code is present)
- If second triple is invalid, the code is incorrect
- true because R is the strongest assertion possible here

Correctness via Backward Reasoning

- Apply backward reasoning to fill in R

- second triple is always valid
- only need to check first triple
just requires proving an implication (since no code is present)
- If first triple is invalid, the code is incorrect
- true because R is the weakest assertion possible here

Mechanical Reasoning Tools

- Forward / backward reasoning fill in assertions
- mechanically create valid triples
- Reduce correctness to proving implications
- this was already true for functional code
- will soon have the same for imperative code
- Implication will be false if the code is incorrect
- reasoning can verify correct code
- reasoning will never accept incorrect code

Correctness via Forward \& Backward

- Can use both types of reasoning on longer code

- first and third triples is always valid
- only need to check second triple
verify that R_{1} implies R_{2}
- we will use do this frequently!

Forward \& Backward Reasoning

Forward and Backward Reasoning

- Imperative code made up of
- assignments (mutation)
- conditionals
- loops
- Anything can be rewritten with just these
- We will learn forward / backward rules for all three
- will also learn a rule for function calls
- once we have those, we are done

Example Forward Reasoning through Assignments

```
\(\{\{\mathrm{w}>0\) \}\}
    \(x=17 ;\)
\(\{\{\ldots\}\)
    y = 42;
\(\{\{\longrightarrow\}\}\)
    \(Z=W+X+Y\) i
\(\{\{\ldots\)
```

- What do we know is true after $\mathrm{x}=17$?
- want the strongest postcondition (most precise)

Example Forward Reasoning through Assignments

```
\(\{\{\mathrm{w}>0\}\}\)
    \(x=17 ;\)
\(\downarrow\{\{\mathrm{w}>0\) and \(\mathrm{x}=17\}\}\)
    y = 42;
\(\{\{\longrightarrow\}\}\)
    \(z=W+X+Y\);
\(\{\{\ldots\)
```

- What do we know is true after $\mathrm{x}=17$?
- w was not changed, so w >0 is still true
- x is now 17
- What do we know is true after $y=42$?

Example Forward Reasoning through Assignments

```
    \(\{\{\mathrm{w}>0\) \}\}
    \(x=17 ;\)
\(\{\{\mathrm{w}>0\) and \(\mathrm{x}=17\}\}\)
    \(y=42\);
\(\{\{w>0\) and \(x=17\) and \(y=42\}\}\)
    z = w + x + y;
\(\{\{\ldots\)
```

- What do we know is true after $y=42$?
- w and x were not changed, so previous facts still true
- y is now 42
- What do we know is true after $z=w+x+y$?

Example Forward Reasoning through Assignments

```
    \(\{\{\mathrm{w}>0\}\}\)
    \(\mathrm{x}=17\);
\(\{\{\mathrm{w}>0\) and \(\mathrm{x}=17\}\}\)
    \(y=42\);
\(\{\{\mathrm{w}>0\) and \(\mathrm{x}=17\) and \(\mathrm{y}=42\}\}\)
    \(\mathrm{z}=\mathrm{w}+\mathrm{x}+\mathrm{y} ;\)
\(\{\{\mathrm{w}>0\) and \(\mathrm{x}=17\) and \(\mathrm{y}=42\) and \(\mathrm{z}=\mathrm{w}+\mathrm{x}+\mathrm{y}\}\}\)
```

- What do we know is true after $z=w+x+y$?
- w, x, and y were not changed, so previous facts still true
$-z$ is now $w+x+y$
- Could also write $\mathrm{z}=\mathrm{w}+59$ (since $\mathrm{x}=17$ and $\mathrm{y}=42$)

Example Forward Reasoning through Assignments

$$
\begin{aligned}
& \{\{w>0\}\} \\
& x=17 ; \\
& \{\{w>0 \text { and } x=17\}\} \\
& y=42 ; \\
& \{\{w>0 \text { and } x=17 \text { and } y=42\}\} \\
& z=w+x+y ; \\
& \{\{w>0 \text { and } x=17 \text { and } y=42 \text { and } z=w+x+y\}\}
\end{aligned}
$$

- Could write $\mathrm{z}=\mathrm{w}+59$, but do not write $\mathrm{z}>59$!
- this is true since $w>0$
- this is not the strongest postcondition
allows the state with $\mathrm{z}=\mathrm{w}=60$, where $\mathrm{z}=\mathrm{w}+59$ is false
- correctness check could now fail even if the code is right

Example Backward Reasoning with Assignments

- What must be true before $z=w+x+y$ so $z<0$?
- want the weakest postcondition (most allowed states)

Example Backward Reasoning with Assignments

- What must be true before $z=w+x+y$ so $z<0$?
- must have $\mathrm{w}+\mathrm{x}+\mathrm{y}<0$ beforehand
- all we did was substitute " $\mathrm{w}+\mathrm{x}+\mathrm{y}$ " for z in " $\mathrm{z}<0$ "
- What must be true before $\mathrm{y}=42$ for $\mathrm{w}+\mathrm{x}+\mathrm{y}<0$?

Example Backward Reasoning with Assignments

$$
\begin{gathered}
\left\{\left\{\begin{array}{c}
x=17 ; \\
x\} \\
\{\{w+x+42<0\}\} \\
y=42 ; \\
\{\{w+x+y<0\}\} \\
z=w+x+y ; \\
\{\{z<0\}\}
\end{array}\right.\right.
\end{gathered}
$$

- What must be true before $y=42$ for $w+x+y<0$?
- must have $\mathrm{w}+\mathrm{x}+42<0$ beforehand
- all we did was substitute " 42 " for y in " $\mathrm{w}+\mathrm{x}+\mathrm{y}<0$ "
- What must be true before $\mathrm{x}=17$ for $\mathrm{w}+\mathrm{x}+42<0$?

Example Backward Reasoning with Assignments

$$
\begin{aligned}
& \left\{\begin{array}{l}
\{\{w+59<0\}\} \\
x=17 ; \\
\{\{w+x+42<0\}\} \\
y=42 ; \\
\{\{w+x+y<0\}\} \\
z=w+x+y ; \\
\{\{z<0\}\}
\end{array}, ~\right.
\end{aligned}
$$

- What must be true before $\mathrm{x}=17$ for $\mathrm{w}+\mathrm{x}+42<0$?
- must have $w+59<0$ beforehand
- all we did was substitute " 17 " for x in " $\mathrm{w}+\mathrm{x}+42<0$ "

Backward Reasoning through Assignments

- For assignments, backward reasoning is substitution
$\uparrow \begin{gathered}\{\{Q[x \mapsto y]\}\} \\ x=y ; \\ \{\{Q\}\}\end{gathered}$
- just replace all the "x"s with "y"s
- we will denote this substitution by $\mathrm{Q}[\mathrm{x} \mapsto \mathrm{y}]$
- Mechanically simpler than forward reasoning
- let's see why...

Forward Reasoning through Assignments

- Forward reasoning is trickier
- previously just added "and $x=y$ " to known facts
- this is correct if x is not used in the other facts
- gets harder if the changed variable appears in other facts...

Forward Reasoning through Assignments

- Forward reasoning is trickier
- previously assumed changed variable was not in assertion
- gets harder if the changed variable is included:

$$
\left\lvert\, \begin{aligned}
& \{\{\mathrm{w}=\mathrm{x}+\mathrm{y}\}\} \\
& \mathrm{x}=4 ; \\
& \{\{\mathrm{w}=\mathrm{x}+\mathrm{y} \text { and } \mathrm{x}=4\}\} \\
& \mathrm{y}=3 ; \\
& \{\{\mathrm{w}=\mathrm{x}+\mathrm{y} \text { and } \mathrm{x}=4 \text { and } \mathrm{y}=3\}\}
\end{aligned}\right.
$$

- Final assertion is not necessarily true
- suppose we start with $w=10, x=6$, and $y=4$
- see that $w=10=6+4=x+y$ is true at the start
- but $w=10 \neq 7=4+3=x+y$ at the end

Forward Reasoning through Assignments

- Forward reasoning is trickier
- previously assumed changed variable was not in assertion
- gets harder if the changed variable is included:

$$
\left\lvert\, \begin{aligned}
& \{\{\mathrm{w}=\mathrm{x}+\mathrm{y}\}\} \\
& \mathrm{x}=4 ; \\
& \{\{\mathrm{w}=\mathrm{x}+\mathrm{y} \text { and } \mathrm{x}=4\}\} \\
& \mathrm{y}=3 ; \\
& \{\{\mathrm{w}=\mathrm{x}+\mathrm{y} \text { and } \mathrm{x}=4 \text { and } \mathrm{y}=3\}\}
\end{aligned}\right.
$$

- The precondition $\mathrm{w}=\mathrm{x}+\mathrm{y}$ is about initial values
- not necessarily true once the variables are changed
(this is why mutation is hard!)

Forward Reasoning through Assignments

- Fix this by giving new names to initial values
- will use "x" and " y " to refer to current values
- can use " x_{0} " and " y_{0} " (or other subscripts) for earlier values

$$
\left\lvert\, \begin{aligned}
& \{\{w=x+y\}\} \\
& x=4 ; \\
& \left\{\left\{w=x_{0}+y \text { and } x=4\right\}\right\} \\
& y=3 ; \\
& \left\{\left\{w=x_{0}+y_{0} \text { and } x=4 \text { and } y=3\right\}\right\}
\end{aligned}\right.
$$

- Final assertion is now accurate
- w is equal to the sum of the initial values of x and y

Forward Reasoning through Assignments

- For assignments, forward reasoning rule is

```
{{P}}
    x = y;
    {{P[x\mapsto \mp@subsup{x}{0}{}] and x=y[x\mapsto 若0]}}
```

- replace all "x"s in P and y with " x_{0} " s (or any new name)
- This process can be simplified in many cases
- no need for x_{0} if we can write it in terms of new value
- e.g., if " $x=x_{0}+1$ ", then " $x_{0}=x-1$ "
- assertions will be easier to read without old values
(Technically, this is weakening, but it's usually fine
Postconditions usually do not refer to old values of variables.)

Forward Reasoning through Assignments

- For assignments, forward reasoning rule is

```
{{P }}
    x = y;
```

$\left\{\left\{P\left[x \mapsto x_{0}\right]\right.\right.$ and $\left.\left.x=y\left[x \mapsto x_{0}\right]\right\}\right\} \quad x_{0}$ is any new variable name

- If $\mathrm{x}_{0}=\mathrm{f}(\mathrm{x})$, then we can simplify this to

$$
\begin{aligned}
& \{\{P\}\} \\
& \quad \mathrm{x}=\ldots \mathrm{x} \ldots ; \\
& \{\{\mathrm{P}[\mathrm{x} \mapsto \mathrm{f}(\mathrm{x})]\}\}
\end{aligned}
$$

no need for, e.g., "and $x=x_{0}+1$ "

- if assignment is " $x=x_{0}+1$ ", then " $x_{0}=x-1$ "
- if assignment is " $x=2 x_{0}$ ", then " $x_{0}=x / 2$ "
- does not work for integer division (an un-invertible operation)

