
Data Abstraction
Kevin Zatloukal

CSE 331

Abstraction Barrier

• Last time, we saw procedural abstraction

– specification is the “barrier” between the sides
– clients depend only on the spec
– implementer can write any code that satisfies the spec

Function
Implementation

Client
Function Call

Abstraction Barrier

Function Specification

Abstraction Barrier

• Last time, we saw procedural abstraction

• Specifications improve
– understandability (client)
– changeability (implementation)
– modularity

Function
Implementation

Client
Function Call

Abstraction Barrier

Function Specification

correctness is impossible
without specifications

Performance Improvements

• Last time, we saw rev-acc, which is faster than rev
– faster algorithm for reversing a list
– rare to see this

• Most perf improvements change data structures
– different kind of abstraction barrier for data

• Let’s see an example…

Data Abstraction

Last Element of a List

func last(nil) :=		undefined
last(cons(x,	nil)) :=		x for	any	x	:	ℤ
last(cons(x,	cons(y,	L)) :=	last(cons(y,	L)) for	any	x,	y	:	ℤ and

any	L	:	List

• Runs in ϴ(n) time
– walks down to the end of the list
– no faster way to do this on a list

• We could cache the last element
– new data type just dropped:

type FastLastList = {list: List, last: number|undefined}

empty list has undefined last

Fast-Last List

type FastLastList = {list: List, last: number|undefined}

• How do we switch to this type?
– change every List into FastLastList

• Will still have functions that operate on List
– e.g., len,	sum,	concat,	rev

• Suppose F is a FastLastList
– instead of calling rev(F), we have call rev(F.list)
– cleaner to introduce a helper function

Fast-Last List

type FastLastList = {list: List, last: number|undefined}

function toList(F: FastLastList): List<number> {
return F.list;

}

• How do we switch to this type?
– change every List into FastLastList
– replace F with toList(F) where a List is expected

• What happens if we need to change it again?
– do it all over again!

Another Fast List

• Suppose we often need the 2nd to last item
and the 3rd to last, etc. How can we make it faster?
– store the list in reverse order!

type FastList = List<number>;

function getLast(F: FastList): number|undefined {

return (F === nil) ? undefined : F.hd;

}

function getSecondToLast(F: FastList): number|undefined {

return (F === nil) ? undefined :
(F.tl === nil) ? undefined : F.tl.hd;

}

function toList(F: FastList): List<number> {
return rev(F);

}

Another Fast List

type FastList = List<number>;

function getLast(F: FastList): number|undefined {
return (F === nil) ? undefined : F.hd;

}

function toList(F: FastList): List<number> {
return rev(F);

}

• Problems with this solution…
– no type errors if someone forgets to call toList!

const F: FastList = …;
return concat(F, cons(1, nil)); // bad!

Another Fast List — Take Two

type FastList = {list: List<number>};

function getLast(F: FastList): number|undefined {
return (F.list === nil) ? undefined : F.list.hd;

}

function toList(F: FastList): List<number> {
return rev(F.list);

}

• Problems with this solution…
– no type errors if someone grabs the field directly

const F: FastList = …;
return concat(F.list, cons(1, nil)); // bad!

Another Fast List — Take Three

const F: FastList = …;
return concat(F.list, cons(1, nil)); // bad!

• Only way to completely stop this is to hide F.list
– do not give them the data, just the functions

type FastList = {

getLast(): number|undefined,
toList(): List<number>

};

– the only way to get the list is to call F.toList()
– seems weird… but we can make it look familiar

Another Fast List — Take Three

interface FastList {
getLast(): number|undefined;
toList(): List<number>;

};

• In TypeScript, “interface” is synonym for “record type”

• You’ve seen this in Java

interface FastList {

int getLast() throws EmptyList;
List<Integer> toList();

}

Java interface is a record where field values are functions (methods)

Data Abstraction

• Give clients only operations, not data
– operations are “public”, data is “private

• We call this an Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– fundamental concept in computer science

built into Java, JavaScript, etc.

– data abstraction via procedural abstraction

• Critical for the properties we want
– easier to change data structure
– easier to understand (hides details)
– more modular

How to Make a FastList — Attempt One

function makeFastList(list: List<number>): FastList {
const last = last(list);

return {
getLast: () => { return last; },
toList: () => { return list; }

};

}

• Values in getLast and toList fields are functions
– “=>” syntax is an expression that produces a function

• There is a cleaner way to do this
– will also look more familiar

How to Make a FastList

class FastLastListImpl implements FastList {
last: number|undefined; // should be “readonly”
list: List<number>;

constructor(list: List<number>) {
this.last = last(list);
this.list = list;

}

getLast = () => { return this.last; }
toList = () => { return this.list; }

}

• Can create a new record using “new”
– each record has fields list, last, getLast, toList
– bodies of functions use “this” to refer to the record

How to Make a FastList

class FastLastListImpl implements FastList {
last: number|undefined; // should be “readonly”
list: List<number>;

constructor(list: List<number>) {
this.last = last(list);
this.list = list;

}

getLast = () => { return this.last; }
toList = () => { return this.list; }

}

• Can create an instance using “new”
– all four assignments are executed on each call to “new”
– getLast and toList are always the same functions

How to Make a FastList

class FastLastListImpl implements FastList {
last: number|undefined; // should be “readonly”
list: List<number>;

constructor(list: List<number>) {
this.last = last(list);
this.list = list;

}

getLast = () => { return this.last; }
toList = () => { return this.list; }

}

• Implements the FastList interface
– i.e., it has the expected getLast and toList fields
– (okay for records to have more fields than required)

Another Way to Make a FastList

class FastListImpl implements FastList {
list: List<number>; // stored in reverse order

constructor(list: List<number>) {
this.list = rev(list);

}

getLast = () => {
return (this.list === nil) ?

undefined : this.list.hd;
};

toList = () => { return rev(this.list); }
}

• Might be better if we had more operations
– secondToLast, thirdToLast, etc., rev (no op)

How Do Clients Get a FastList

function makeFastList(list: List<number>): FastList {
return new FastLastListImpl(list);

}

• Export only FastList and makeFastList
– completely hides the data representation from clients

• This is called a “factory function”
– another design pattern
– can change implementations easily in the future

becomes FastListImpl with a one-line change

• Difficult to add to the list with this interface
– requires three calls: toList, cons, makeFastList

Another Way To Do It

interface FastList {
cons(x: number): FastList;
getLast(): number|undefined;
toList(): List<number>;

};

function makeFastList(): FastList {

return new FastListImpl(nil);

}

• New method cons returns list with x in front
– now, we only need to make an empty FastList

anything else can be built via cons

– example of a “producer” method (others are “observers”)
produces a new list for you

Specifications for ADTs

Specifications for ADTs

• Run into problems when we try to write full specs
– for example, what goes after @return?

don’t want to say returns the .list field (or reverse of that)
we want to hide those details from clients

interface FastList {
/**

* Returns the “underlying” list of items
* @return ??

*/
toList(): List<number>

};

• Need some terminology to clear up confusion

ADT Terminology

New terminology for specifying ADTs

Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: {list: List, last: number|undefined}

Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• We’ve had different abstract and concrete types all along!
– in our math, List is an inductive type (abstract)
– in our code, List is a string or a record (concrete)

List Is (Almost) an ADT

New terminology for specifying ADTs

Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: “nil” | {kind: “cons”, hd: number, tl: List}

Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• Doesn’t precisely follow the design pattern we will use for ADT
– “cons” is a function rather than a method
– fields “hd” and “tl” are accessed by clients

ADT Terminology

New terminology for specifying ADTs

Concrete State / Representation (Code)
actual fields of the record and the data stored in them

Last example: {list: List, last: number|undefined}

Abstract State / Representation (Math)
how clients should think about the object

Last example: List (i.e., nil or cons)

• Term “object” (or “obj”) will refer to abstract state
– “object” means mathematical object
– “obj” is the mathematical value that the record represents

Specifying FastList

/**
* A list of integers that can retrieve the last

* element in O(1) time.
*/

export interface FastList {
/**

* Returns the last element of the list (O(1) time).

* @returns last(obj)
*/

getLast(): number | undefined;

• “obj” refers to the abstract state (the list, in this case)
– actual state will be a record with fields last and list

Specifying FastList

/**
* A list of integers that can retrieve the last

* element in O(1) time.
*/

export interface FastList {
…

/**

* Returns the object as a regular list of items.
* @returns obj

*/
toList(): List<number>

• In math, this function does nothing (“@returns obj”)
– two concrete representations of the same math idea
– details of the representations are hidden from clients

Specifying FastList

/**
* A list of integers that can retrieve the last

* element in O(1) time.
*/

export interface FastList {
…

/**

* Returns a new list with x in front of this list.
* @returns cons(x, obj)

*/
cons(x: number): FastList;

• Producer method: makes a new list for you
– “obj” above is a list, so cons(x,	obj) makes sense in math

Specifying FastList

/**
* A list of integers that can retrieve the last

* element in O(1) time.
*/

export interface FastList {
…

/**

* Returns a new list with x in front of this list.
* @returns cons(x, obj)

*/
cons(x: number): FastList

• Specification does not talk about fields, just “obj”
– fields are hidden from clients

Documenting the ADT
Implementation

Documenting an ADT Implementation

• We also need to document the ADT implementation
– for this, we need two new tools

Abstraction Function
defines what abstract state the field values currently represent

• Maps the field values to the object they represent
– output is math, so this is a mathematical function

there is no such function in the code
this is a tool for reasoning

– will usually write this as an equation
obj	=	… right-hand side uses the fields

Documenting the FastList ADT

class FastListImpl implements FastList {
// AF: obj = this.list
readonly last: number | undefined;
readonly list: List<number>;
…

}

• Abstraction Function (AF) gives the abstract state
– obj = abstract state
– this = concrete state

“this” is the record, which has fields last and list

– AF relates abstract state to the current concrete state
okay that “last” is not involved here

– specifications only talk about “obj”, not “this”

