
Binary Trees
Kevin Zatloukal

CSE 331

Administrivia

• HW2 released yesterday
– due next Wednesday by 11pm

• HW2 is much longer than HW1
HW1 was a ~half assignment

– HW2 is more coding than paper

– HW2 has lots of repetition
lots of new ideas, needs practice

Proof by Calculation

Proving Correctness with Multiple Claims

• Need to check the claim from the spec at each return

• If spec claims multiple facts, then
we must prove that each of them holds

// Inputs x and y are integers with x < y + 1
// Returns a number less than y and greater than x.

function f(x: number, y, number): number

– multiple known facts: x	:	ℤ,	y	:	ℤ,	and	x	<	y	+	1
– multiple claims to prove: x	<	r	and	r	<	y

where “r” is the return value

Example Correctness with Conditionals

// Returns a if a >= b and b if a < b
function max(a: number, b, number): number {

if (a >= b) {
return a;

} else {
return b;

}

}

Level 0

Example Correctness with Conditionals

// Returns x with (x=a or x=b) and x >= a and x >= b
function max(a: number, b, number): number {

if (a >= b) {
return a;

} else {
return b;

}

}

• Three different facts to prove at each return

• Two known facts in each branch (return value is “x”):
– then branch: a	≥	b		and		x	=	a
– else branch: a	<	b		and		x	=	b

Level 1

Example Correctness with Conditionals

// Returns x with (x=a or x=b) and x >= a and x >= b
function max(a: number, b, number): number {

if (a >= b) {
return a;

} else {
return b;

}

}

• Correctness of return in “then” branch:
– x	=	a holds so “x	=	a	or	x	=	b” holds,
– x	≥	a	holds, and

x =	a
≥	b since a	≥	b

Example Correctness with Conditionals

// Returns x with (x=a or x=b) and x >= a and x >= b
function max(a: number, b, number): number {

if (a >= b) {
return a;

} else {
return b;

}

}

• Correctness of return in “else” branch:
– x	=	b holds so “x	=	a	or	x	=	b” holds,
– x	≥	b	holds, and
– x	≥	a	holds since we have x	>	a:

x =	b
>	a since a	≥	b is false

Sum of a List

// a and b must be integers
function f(a: number, b: number): number {

const L: List = cons(a, cons(b, nil));
const s: number = sum(L); // = a + b
…

}

• Can prove the claim in the comments by calculation

sum(cons(a,	cons(b,	nil)))
=	a	+	sum(cons(b,	nil)) def of sum
=	a	+	b	+	sum(nil) def of sum
=	a	+	b def of sum

Sum of a List

// a and b must be integers
function f(a: number, b: number): number {

const L: List = cons(a, cons(b, nil));
const s: number = sum(L); // = a + b
…

}

• Can prove the claim in the comments by calculation

sum(cons(a,	cons(b,	nil)))	=	…		=	a	+	b

• For which values of a and b does this hold?

holds	for	any a	∈	ℤ and	b	∈	ℤ

What We Have Proven

• We proved by calculation that

sum(cons(a,	cons(b,	nil)))	=	a	+	b

• This holds for any a	∈	ℤ and	b	∈	ℤ

• We have proven infinitelymany facts
– sum(cons(3,	cons(5,	nil)))	=	8
– sum(cons(-5,	cons(2,	nil)))	=	-3
– …
– replacing all the ‘a’s and ‘b’s with those numbers

gives a calculation proving the “=” for those numbers

What We Have Proven

• We proved by calculation that

sum(cons(a,	cons(b,	nil)))	=	a	+	b for	any a,	b	∈	ℤ

• We can use this fact for any a and b we choose
– our proof is a “recipe” that can be used for any a and b
– just as a function can be used with any argument values,

our proof can be used with any values for the “any” variables
(any values satisfying the specification)

Proofs of “For All” Claims In Math

• This is called a “direct proof” of the “for all” claim

• They would write the proof like this
Let a	∈	ℤ and b	∈	ℤ be any integers.

[calculation block]

Since a and b were arbitrary, we have proven the equality for any a and b.

– in reasoning about code, we’ll skip the first and last parts
– variables in the code are always “any” value of that type

• We won’t worry about this distinction
– some facts use variables, and some don’t

Proofs of “For All” Claims

We will learn three ways of proving “for all” claims:

1. Calculation (“Direct Proof”)
2. Proof by Cases
3. Structural Induction

• Saw that the first is just a calculation block.

• Second two gives us a few implications to prove
– those implications are usually proven by calculation
– calculation is the workhorse for reasoning w/out mutation

Binary Trees

type Tree	:=		empty	|		node(x	:	ℤ,	L	:	Tree,	R	:	Tree)

• Inductive definition of trees of integers

node(1,	node(2,	empty,	empty),		node(3,	empty,	node(4,	empty,	empty))))

Binary Trees

1

2 3

4

Height of a Tree

type Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Height of a tree: “maximum steps to get to a leaf”

1

2 3

4

1 1

2

1

2 3

0 1 1 2

Height of a Tree

type Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Mathematical definition of height

func height(empty) :=		
height(node(x,	L,	R)) :=

for	any	x	∈	ℤ and	any	L,	R	∈	Tree

Height of a Tree

type Tree	:=		empty	|		node(x:	ℤ,	L:	Tree,	R:	Tree)

• Mathematical definition of height

func height(empty) :=		–1
height(node(x,	L,	R)) :=		1	+	max(height(L),	height(R))

for	any	x	∈	ℤ and	any	L,	R	∈	Tree

Using Definitions in Calculations

func height(empty) :=		–1
height(node(x,	L,	R)) :=		1	+	max(height(L),	height(R))

for	any	x	∈	ℤ and	any	L,	R	∈	Tree

• Suppose “T	=	node(1,	empty,	node(2,	empty,	empty))”

• Prove that height(T)	=	1

height(T) =

Using Definitions in Calculations

func height(empty) :=		–1
height(node(x,	L,	R)) :=		1	+	max(height(L),	height(R))

for	any	x	∈	ℤ and	any	L,	R	∈	Tree

• Suppose “T	=	node(1,	empty,	node(2,	empty,	empty))”

• Prove that height(T)	=	1

height(T) =	height(node(1,	empty,	node(2,	empty,	empty)) since T	=	…
=	1	+	max(height(empty),	height(node(2,	empty,	empty)))	 def of height
=	1	+	max(-1,	height(node(2,	empty,	empty)))	 def of height
=	1	+	max(-1,	1+	max(height(empty),	height(empty)))	 def of height
=	1	+	max(-1,	1+	max(-1,	-1))	 def of height	(x	2)
=	1	+	max(-1,	1+	-1)	 def of max
=	1	+	max(-1,	0)	
=	1	+	0 def of max
=	1

Trees

• Trees are inductive types with a constructor that
has 2+ recursive arguments

• These come up all the time…
– no constructors with recursive arguments = “generalized enums”
– constructors with 1 recursive arguments = “generalized lists”
– constructors with 2+ recursive arguments = “generalized trees”

• Some prominent examples:
– HTML: used to describe UI
– JSON: used to describe just about any data

HTML

• Hyper Text Markup Language
– used to describe UI
– each document is a tree containing tags and text

Tag Name Content

Closing Tag

Element

<p> Some Text </p>

HTML

• Hyper Text Markup Language
– used to describe UI
– each document is a tree containing tags and text

<p id=”firstParagraph”> Some Text </p>

Tag Name

Attribute Name

Attribute Value Content

Closing Tag

Element

HTML

• Nesting structure describes the tree

<div>
<p id=”firstParagraph”> Some Text </p>

<div>

<p>Hello</p>
</div>

</div>

div

p br div

p

JSX

• HTML literals are allowed in JS / TS
– change the file name to .jsx or .tsx

const x = <p>Hi, Fred.</p>;

– if written on multiple lines, you must use (..)

const x = (

<p>
Hi, Fred.

</p>);

JSX

• HTML literals are allowed in JS / TS
– can substitute values of expression using {..}

const name = “Fred”;

const x = <p>Hi, {name}.</p>

• Body of P tag becomes “Hi, Fred”.
– arbitrary expressions allowed in {..}

• Type checker ensures that the HTML is valid
– e.g., attribute names exist and are set to valid values

JSX Gotchas

• Put (..) around HTML if more than one line

• Some attribute names are keywords
– e.g., “class” and “for”
– instead use “className” and “htmlFor”

• HTML expressions must have one root
– illegal: return <p>one</p><p>two<p>;
– usually fixed by adding a new parent (e.g., div)

Custom Tags

• The React library lets you write “custom tags”
– functions that return HTML

return (

<div>
<p>Hi, Alice!</p>

<p>Hi, Bob!</p>
</div>);

can become

return (

<div>
<SayHi name={“Alice”}/>

<SayHi name={“Bob”}/>
</div>);

Custom Tags

• The React library lets you write “custom tags”

return (
<div>

<SayHi name={“Alice”}/>
<SayHi name={“Bob”}/>

</div>);

makes two calls to this function

function SayHi(props: {name: string}): JSX.Element {
return <p>Hi, {props.name}</p>;

}

– attributes are passed as a record argument (“props”)

Custom Tags

return (
<div>

<SayHi name={“Alice”} lang={“es”}/>
<SayHi name={“Bob”}/>

</div>);

makes two calls to this function

type SayHiProps = {name: string, lang?: string};

function SayHi(props: SayHiProps): JSX.Element {
if (props.lang === “es”) {

return <p>Hola, {props.name}</p>;
} else {

return <p>Hi, {props.name}</p>;
}

}

Custom Tags

• The React library lets you write “custom tags”
– attributes are passed as a record argument (“props”)

• At run-time, React will paste the parts together:
<div>

<SayHi name={“Alice”} lang={“es”}/>

<SayHi name={“Bob”}/>
</div>

becomes
<div>

<p>Hola, Alice!</p>
<p>Hi, Bob!</p>

</div>

Custom Tags

• HTML literal syntax allows any tags

return (
<div>

<SayHi name={“Alice”} lang={“es”}/>
<SayHi name={“Bob”}/>

</div>);

– evaluates to a tree with two nodes with tag name “SayHi”
– keep this in mind when testing (comes up in HW2)

• React’s render method is what calls SayHi
– HTML returned is substituted where the “SayHi” tag was

React Render

• React’s render pastes strings together

const name: String = “Fred”;

return <p>Hi, {name}</p>;

returns a different tree than

return <p>Hi, Fred</p>;

– in first tree, “p” tag has one child
– in second tree, “p” tag has two children
– render method concatenates text children into one string

• These differences matter for testing!

React Render

• React’s render pastes arrays into child list

const L = [Hi, Fred];

return <p>{L}</p>;

returns a different tree than

return <p>HiFred</p>;

– in first tree, “p” tag has one child
– in second tree, “p” tag has two children
– render method turns the first into the second

• These differences matter for testing!

