
Basics of Reasoning
Kevin Zatloukal

CSE 331

Review

• These three lectures
1. Data types (data)
2. Functions (code)
3. Proofs (reasoning)

• Saw inductive data types
– most primitive way to build new types

• Structurally recursive functions
– safest type of recursion
– only works for recursion on inductive types

Facts

• Basic inputs to reasoning are “facts”
– things we know to be true about the variables
– typically, “=” or “<” or “≤”

// n must be a natural number
function f(n: number): number {

const m = 2*n;
return (m + 1) * (m – 1);

}

• At the return statement, we know these facts:
– n	∈	ℕ (or	n	∈ ℤ	and	n	≥	0)
– m	=	2n

Facts

• Basic inputs to reasoning are “facts”
– things we know to be true about the variables
– typically, “=” or “<” or “≤”

// n must be a natural number
function f(n: number): number {

const m = 2*n;
return (m + 1) * (m – 1);

}

• No need to include the fact that n is a number (n	∈	ℝ)
– that is true, but the type checker takes care of that
– no need to repeat reasoning done by the type checker

Implications

• We can use the facts we know to prove more facts

• If we can prove R using facts P and Q,
we say that R “follows from” / “is implied by” P and Q
– checking correctness is just proving implications
– other reasoning tools output implications for us to prove

• The techniques we will learn are
– proof by calculation
– proof by cases
– structural induction

gives us two implications,
each usually proven by calculation

Proof by Calculation

• Proves an implication
– fact to be shown is an equation or inequality

• Uses known facts and definitions
– latter includes, e.g., the fact that len(nil)	=	0

Example Proof by Calculation

• Given x	=	y and z	<	10, prove that x	+	z	<	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z

Example Proof by Calculation

• Given x	=	y and z	<	10, prove that x	+	z	<	y	+	10
– show the third fact follows from the first two

• Start from the left side of the inequality to be proved

x	+	z =	y	+	z since x	=	y
<	y	+	10 since z	<	10

– “calculation block”, includes explanations in right column

Calculation Blocks

• Chain of “=” shows first = last

a =	b
=	c
=	d

– proves that a	=	d
– all 4 of these are the same number

Calculation Blocks

• Chain of “=” and “<” shows first < last

x	+	z =	y	+	z since x	=	y
<	y	+	10 since z	<	10
=	y	+	3	+	7
<	w	+	7 since y	+	3	<	w

– each number is equal or strictly larger that previous
last number is strictly larger than the first number

– likewise for “=” and “≤”
numbers are equal or larger, so last number is largest

– analogous for “>” and “≥” cases

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	0” and “y	>	0”

• Correct if the return value is a positive integer

x	+	y

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	0” and “y	>	0”

• Correct if the return value is a positive integer

x	+	y >	x	+	0 since y	>	0
=	x
>	0 since x	>	0

– calculation shows that x	+	y	>	0

Using Calculation to Prove Correctness

// Inputs x and y are positive integers
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x ∈	ℤ” and “y	∈	ℤ”

• Correct if the return value is a positive integer
– we know that “x + y” is an integer
– should be second nature from Java programming
– unless there is division involved, we will skip this

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 9 and y > -9
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	9” and “y	>	–9”

• Correct if the return value is a positive integer

x	+	y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 9 and y > -9
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	9” and “y	>	–9”

• Correct if the return value is a positive integer

x	+	y >	x	+	-9 since y	>	-9
>	9	- 9 since x	>	9
=	0

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	3” and “y	>	4”

• Correct if the return value is 10 or larger

x	+	y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	3” and “y	>	4”

• Correct if the return value is 10 or larger

x	+	y >	x	+	4 since y	>	4
>	3	+	4 since x	>	3
=	7

proof doesn’t work because
the code is wrong!

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	8” and “y	>	–9”

• Correct if the return value is a positive integer

x	+	y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	8” and “y	>	–9”

• Correct if the return value is a positive integer

x	+	y >	x	+	-9 since y	>	-9
>	8	- 9 since x	>	8
=	-1

proof doesn’t work because
the proof is insufficient

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	8” and “y	>	–9”
– equivalent (since these are integers) to x	≥	9 and y	≥	-8

• Correct if the return value is a positive integer

x	+	y

Using Calculation to Prove Correctness

// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.

function f(x: number, y, number): number {
return x + y;

}

• Known facts “x	>	8” and “y	>	–9”
– equivalent (since these are integers) to x	≥	9 and y	≥	-8

• Correct if the return value is a positive integer

x	+	y ≥	x	+	–8 since y	≥	-8
≥	9	– 8 since x	≥	9
=	1
>	0

What We Get from Reasoning

• If the proof works, the code is correct
– why reasoning is useful for finding bugs

• If the code is incorrect, the proof will not work

• If the proof does not work, then either
1. the code is wrong or
2. the proof is insufficient (too weak)

– need to think to figure out which
– (but it’s usually because the code is wrong)

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.

function f(x: number, y, number): number {
if (y < 0) {

return x + y;
} else {

return x – 1;

}
}

• Known fact in then branch “y	<	0”

x	+	y

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.

function f(x: number, y, number): number {
if (y < 0) {

return x + y;
} else {

return x – 1;

}
}

• Known fact in then branch “y	<	0”

x	+	y <	x	+	0 since y	<	0
=	x

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.

function f(x: number, y, number): number {
if (y < 0) {

return x + y;
} else {

return x – 1;

}
}

• Known fact in else branch “y	≥	0”

x	– 1

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.

function f(x: number, y, number): number {
if (y < 0) {

return x + y;
} else {

return x – 1;

}
}

• Known fact in else branch “y	≥	0”

x	– 1 <	x	+	0 since –1	<	0
=	x

Proving Correctness with Conditionals

// Inputs x and y are integers.
// Returns a number less than x.

function f(x: number, y, number): number {
if (y < 0) {

return x + y;
} else {

return x – 1;

}
}

• Conditionals give us extra known facts
– get known facts from

1. specification
2. conditionals
3. constant declarations

Using Definitions in Calculations

• Most useful with function calls
– cite the definition of the function to get the return value

• For example

func sum(nil) :=		0
sum(cons(x,	L)) :=		x	+	sum(L) for	any	x	∈	ℤ

and	any	L	∈	List

• Can cite facts such as
– sum(nil)	=	0
– sum(cons(a,	cons(b,	nil)))	=	a	+	sum(cons(b,	nil))

second case of definition with x	=	a and L	=	cons(b,	nil)

Using Definitions in Calculations

func sum(nil) :=		0
sum(cons(x,	L)) :=		x	+	sum(L) for	any	x	∈	ℤ

and	any	L	∈	List

• Consider this code

// Inputs a and b must be integers.
// Returns a non-negative integer.

function f(a: number, b: number): number {
const L: List = cons(a, cons(b, nil));

if (a >= 0 && b >= 0)
return sum(L);

…

• Known facts include “a	≥	0”, “b	≥	0”, and “L	=	cons(…)”

Using Definitions in Calculations

func sum(nil) :=		0
sum(cons(x,	L)) :=		x	+	sum(L) for	any	x	∈	ℤ

and	any	L	∈	List

• Know “a	≥	0”, “b	≥	0”, and “L	=	cons(a,	cons(b,	nil))”

• Prove the return value is non-negative

sum(L)

Using Definitions in Calculations

func sum(nil) :=		0
sum(cons(x,	L)) :=		x	+	sum(L) for	any	x	∈	ℤ

and	any	L	∈	List

• Know “a	≥	0”, “b	≥	0”, and “L	=	cons(a,	cons(b,	nil))”

• Prove the return value is non-negative

sum(L) =	sum(cons(a,	cons(b,	nil)) since L	=	cons(a,	cons(b,	nil))
=	a	+	sum(cons(b,	nil)) def of sum
=	a	+	b	+	sum(nil) def of sum
=	a	+	b def of sum
≥	0	+	b since a	≥	0
≥ 0 since b	≥	0

