CSE 331

Basics of Reasoning

Kevin Zatloukal

Review

- These three lectures

1. Data types (data)
2. Functions (code)
3. Proofs (reasoning)

- Saw inductive data types
- most primitive way to build new types
- Structurally recursive functions
- safest type of recursion
- only works for recursion on inductive types

Facts

- Basic inputs to reasoning are "facts"
- things we know to be true about the variables
- typically, "=" or "<" or "

```
// n must be a natural number
function f(n: number): number {
    const m = 2*n;
    return (m + 1) * (m - 1);
}
```

- At the return statement, we know these facts:
$-\mathrm{n} \in \mathbb{N}$
(or $\mathrm{n} \in \mathbb{Z}$ and $\mathrm{n} \geq 0$)
$-\mathrm{m}=2 \mathrm{n}$

Facts

- Basic inputs to reasoning are "facts"
- things we know to be true about the variables
- typically, "=" or "<" or "

```
// n must be a natural number
function f(n: number): number {
    const m = 2*n;
    return (m + 1) * (m - 1);
}
```

- No need to include the fact that \mathbf{n} is a number ($\mathrm{n} \in \mathbb{R}$)
- that is true, but the type checker takes care of that
- no need to repeat reasoning done by the type checker

Implications

- We can use the facts we know to prove more facts
- If we can prove R using facts P and Q, we say that R "follows from" / "is implied by" P and Q
- checking correctness is just proving implications
- other reasoning tools output implications for us to prove
- The techniques we will learn are
- proof by calculation
- proof by cases
- structural induction each usually proven by calculation

Proof by Calculation

- Proves an implication
- fact to be shown is an equation or inequality
- Uses known facts and definitions
- latter includes, e.g., the fact that len(nil) $=0$

Example Proof by Calculation

- Given $\mathrm{x}=\mathrm{y}$ and $\mathrm{z}<10$, prove that $\mathrm{x}+\mathrm{z}<\mathrm{y}+10$
- show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$
x+z
$$

Example Proof by Calculation

- Given $\mathrm{x}=\mathrm{y}$ and $\mathrm{z}<10$, prove that $\mathrm{x}+\mathrm{z}<\mathrm{y}+10$
- show the third fact follows from the first two
- Start from the left side of the inequality to be proved

$$
\begin{array}{lll}
x+z & =y+z & \\
& <y+10 & \\
& \text { since } x=y \\
& \text { since } z<10
\end{array}
$$

- "calculation block", includes explanations in right column

Calculation Blocks

- Chain of "=" shows first = last

$$
\begin{aligned}
a & =b \\
& =c \\
& =d
\end{aligned}
$$

- proves that $\mathrm{a}=\mathrm{d}$
- all 4 of these are the same number

Calculation Blocks

- Chain of "=" and "<" shows first < last

$$
\begin{array}{rlrl}
x+z & & y+z & \\
& <y+10 & & \text { since } x=y \\
& <y<10 \\
& =y+3+7 & & \\
& <w+7 & & \text { since } y+3<w
\end{array}
$$

- each number is equal or strictly larger that previous
last number is strictly larger than the first number
- likewise for "=" and " \leq "
numbers are equal or larger, so last number is largest
- analogous for ">" and " \geq " cases

Using Calculation to Prove Correctness

```
// Inputs x and y are positive integers
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x>0" and " $y>0$ "
- Correct if the return value is a positive integer

$$
x+y
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are positive integers
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x > 0" and "y > 0"
- Correct if the return value is a positive integer

$$
\begin{array}{llr}
x+y & >x+0 & \\
& \text { since } y>0 \\
& >0 & \\
& \text { since } x>0
\end{array}
$$

- calculation shows that $x+y>0$

Using Calculation to Prove Correctness

```
// Inputs x and y are positive integers
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts " $x \in \mathbb{Z}$ " and " $y \in \mathbb{Z}$ "
- Correct if the return value is a positive integer
- we know that " $x+y$ " is an integer
- should be second nature from Java programming
- unless there is division involved, we will skip this

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 9 and y > -9
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x > 9" and "y > -9"
- Correct if the return value is a positive integer

$$
x+y
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 9 and y > -9
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x > 9" and "y > -9"
- Correct if the return value is a positive integer

$$
\begin{array}{rlrl}
x+y & & >x+-9 & \\
& \text { since } y>-9 \\
& >9-9 & & \text { since } x>9 \\
& =0 & &
\end{array}
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x > 3" and "y > 4"
- Correct if the return value is $\mathbf{1 0}$ or larger

$$
x+y
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 3 and y > 4
// Returns an integer that is 10 or larger.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x > 3" and "y > 4"
- Correct if the return value is $\mathbf{1 0}$ or larger

$$
\begin{array}{llr}
x+y & >x+4 & \\
& >3+4 & \text { since } y>4 \\
& =7 & \text { since } x>3
\end{array}
$$

proof doesn't work because
the code is wrong!

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x > 8" and "y > -9"
- Correct if the return value is a positive integer

$$
x+y
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x > 8" and "y > -9"
- Correct if the return value is a positive integer

$$
\begin{aligned}
x+y & & >x+-9 & \\
& >8-9 & & \text { since } y>-9 \\
& =-1 & & \text { since } x>8
\end{aligned}
$$

proof doesn't work because
the proof is insufficient

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x >8 " and " $y>-9$ "
- equivalent (since these are integers) to $x \geq 9$ and $y \geq-8$
- Correct if the return value is a positive integer

$$
x+y
$$

Using Calculation to Prove Correctness

```
// Inputs x and y are integers with x > 8 and y > -9
// Returns a positive integer.
function f(x: number, y, number): number {
    return x + y;
}
```

- Known facts "x >8 " and " $y>-9$ "
- equivalent (since these are integers) to $x \geq 9$ and $y \geq-8$
- Correct if the return value is a positive integer

$$
\begin{array}{rlrl}
x+y & \geq x+-8 & & \text { since } y \geq-8 \\
& \geq 9-8 & & \text { since } x \geq 9 \\
& =1 & \\
& >0 &
\end{array}
$$

What We Get from Reasoning

- If the proof works, the code is correct
- why reasoning is useful for finding bugs
- If the code is incorrect, the proof will not work
- If the proof does not work, then either

1. the code is wrong or
2. the proof is insufficient (too weak)

- need to think to figure out which
- (but it's usually because the code is wrong)

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
function f(x: number, y, number): number {
    if (y < 0) {
        return x + y;
    } else {
        return x - 1;
    }
}
```

- Known fact in then branch "y<0"

$$
x+y
$$

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
function f(x: number, y, number): number {
    if (y < 0) {
        return x + y;
    } else {
        return x - 1;
    }
}
```

- Known fact in then branch "y<0"

$$
\begin{array}{rlr}
\mathrm{x}+\mathrm{y} & <\mathrm{x}+0 & \text { since } \mathrm{y}<0 \\
& =\mathrm{x} &
\end{array}
$$

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
function f(x: number, y, number): number {
    if (y < 0) {
        return x + y;
    } else {
        return x - 1;
    }
}
```

- Known fact in else branch " $\mathrm{y} \geq 0$ "
x-1

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
function f(x: number, y, number): number {
    if (y < 0) {
        return x + y;
    } else {
        return x - 1;
    }
}
```

- Known fact in else branch " $\mathrm{y} \geq 0$ "

$$
\begin{array}{rlr}
\mathrm{x}-1 & <\mathrm{x}+0 & \text { since }-1<0 \\
& =\mathrm{x} &
\end{array}
$$

Proving Correctness with Conditionals

```
// Inputs x and y are integers.
// Returns a number less than x.
function f(x: number, y, number): number {
    if (y < 0) {
        return x + y;
    } else {
        return x - 1;
    }
}
```

- Conditionals give us extra known facts
- get known facts from

1. specification
2. conditionals
3. constant declarations

Using Definitions in Calculations

- Most useful with function calls
- cite the definition of the function to get the return value
- For example

func sum(nil)	$:=0$	
$\operatorname{sum}(\operatorname{cons}(x, L))$	$:=x+\operatorname{sum}(L)$	
		for any $x \in \mathbb{Z}$
and any $L \in$ List		

- Can cite facts such as
$-\operatorname{sum}($ nil $)=0$
$-\operatorname{sum}(\operatorname{cons}(a, \operatorname{cons}(b, n i l)))=a+\operatorname{sum}(\operatorname{cons}(b, n i l))$

Using Definitions in Calculations

$$
\begin{array}{ll}
\text { func sum(nil) } & :=0 \\
\operatorname{sum}(\operatorname{cons}(x, L)) & :=x+\operatorname{sum}(L)
\end{array} \begin{aligned}
& \text { for any } x \in \mathbb{Z} \\
&
\end{aligned}
$$

- Consider this code

```
// Inputs a and b must be integers.
// Returns a non-negative integer.
function f(a: number, b: number): number {
    const L: List = cons(a, cons(b, nil));
    if (a >= 0 && b >= 0)
    return sum(L);
```

- Known facts include "a ≥ 0 ", " $b \geq 0$ ", and "L $=\operatorname{cons}(\ldots)$ "

Using Definitions in Calculations

func sum(nil)	$:=0$	
$\operatorname{sum}(\operatorname{cons}(x, L))$	$:=x+\operatorname{sum}(L)$	for any $x \in \mathbb{Z}$
		and any $L \in$ List

- Know "a ≥ 0 ", " $b \geq 0$ ", and " $L=\operatorname{cons(a,~cons(b,~nil))"~}$
- Prove the return value is non-negative

```
sum(L)
```


Using Definitions in Calculations

func sum(nil)	$:=0$	
$\operatorname{sum}(\operatorname{cons}(x, L))$	$:=x+\operatorname{sum}(L)$	for any $x \in \mathbb{Z}$
		and any $L \in$ List

- Know "a ≥ 0 ", "b ≥ 0 ", and " $L=\operatorname{cons(a,~cons(b,~nil))"~}$
- Prove the return value is non-negative

```
sum(L) = sum(cons(a, cons(b, nil)) since L = cons(a,cons(b, nil))
    =a+\operatorname{sum(cons(b, nil)) def of sum}
    =a+b+\operatorname{sum(nil) def of sum}
    =a+b def of sum
    \geq0+b since a }\geq
    \geq0 since b \geq0
```

