CSE 331

Inductive Data \& Recursion

Kevin Zatloukal

Recall: Basic Data Types

- In math, the basic data types are "sets"
- sets are collections of objects called elements
- write $x \in S$ to say that " x " is an element of set " S ", and $x \notin S$ to say that it is not.
- Examples:

$$
\begin{aligned}
& x \in \mathbb{Z} \\
& x \in \mathbb{N} \\
& x \in \mathbb{R} \\
& x \in \mathbb{B} \\
& x \in \mathbb{S} \\
& x \in \mathbb{S}^{*}
\end{aligned}
$$

x is an integer
x is a non-negative integer (natural)
x is a real number
x is T or F (boolean)
x is a character
x is a string

Recall: Ways to Create New Types In Math

- Record Types $\{\mathrm{x}: \mathbb{N}, \mathrm{y}: \mathbb{N}\}$
- Union Types $\mathbb{S}^{*} \cup \mathbb{N}$
- contains every object in either (or both) of those sets
- Tuple Types $\mathbb{N} \times \mathbb{N}$
- pair of two numbers
- can do tuples of 3,4, or more elements also

Recall: TypeScript type system

- TypeScript supports records, union, tuples
- supports real, boolean, and string does not have integer, natural, or character types
- supports finite subsets of strings as unions of literal types
- Union types supported via type "narrowing"
- "if" statements can check types at run time
- TypeScript updates its type information for each branch
- Java and TypeScript are fundamentally different
- nominal vs structural typing

Inductive Data

Inductive Data Types

- Missing one more way of defining types
- arguably the most important
- Inductive data types are defined recursively
- combine union with recursion

Inductive Data Types

- Describe a set by ways of creating its elements
- each is a "constructor"

$$
\text { type } \mathrm{T}:=\mathrm{A}(\mathrm{x}: \mathbb{Z}) \mid \mathrm{B}(\mathrm{x}: \mathbb{Z}, \mathrm{y}: \mathrm{T})
$$

- second constructor is recursive
- can have any number of arguments (even none) will leave off the parentheses when there are none
- Examples of elements

$$
\begin{aligned}
& \mathrm{A}(1) \\
& \mathrm{B}(2, \mathrm{~A}(1)) \\
& \mathrm{B}(3, \mathrm{~B}(2, \mathrm{~A}(1)))
\end{aligned}
$$

Natural Numbers

$$
\text { type } \mathbb{N}:=\text { zero } \mid \operatorname{succ}(\mathrm{n}: \mathbb{N})
$$

- Inductive definition of the natural numbers

```
zero
    0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3
```

The most basic set we have is defined inductively!

Even Natural Numbers

```
type \mathbb{E}:= zero | two-more(n:\mathbb{E})
```

- Inductive definition of the even natural numbers

```
zero 0
two-more(zero) 2
two-more(two-more(zero)) 4
two-more(two-more(two-more(zero))) 6

\section*{Lists}
\[
\text { type List }:=\text { nil } \mid \operatorname{cons}(x: \mathbb{Z}, \text { L }: \text { List })
\]
- Inductive definition of lists of integers
```

nil
cons(3, nil)
cons(2, cons(3, nil))
cons(1, cons(2, cons(3,nil))) \approx [1, 2, 3]
cons(2, cons(3, nil))
$\approx[]$
cons(3, nil)
cons(1, cons(2, cons(3, nil)))
$\approx[3]$
$\approx[2,3]$

```

\(\approx[1,2,3]\)

\section*{Inductive Data Types in TypeScript}
- TypeScript does not natively support inductive types
- some "functional" languages do (e.g., Ocaml and ML)
- We will cobble them together as follows...
```

type List = "nil"
| {kind: "cons", hd: number, tl: List};

```
- union of a literal type and a record type
- the "kind" field is technically not necessary
can already distinguish string from record
useful in other cases to distinguish different constructors

\section*{Inductive Data Type Design Pattern}
\[
\text { type } T:=A|B| C(x: \mathbb{Z}) \mid D(x: \mathbb{Z}, \mathrm{t}: \mathrm{T})
\]
- Implement in TypeScript as
```

type T = "A"
| "B"
| {kind: "C", x: number}
| {kind: "D", x: number, t: T};

```
- Another design pattern
- work around the limitations of TypeScript (no inductive types)
- everything above should also be "readonly"

\section*{Inductive Data Types in TypeScript}
- Make this look more like math notation...
```

type List = "nil"
| {kind: "cons", hd: number, tl: List};
const nil: List = "nil";
function cons(hd: number, tl: List) {
return {kind: "cons", hd: hd, tl: tl};
}

```

\section*{Inductive Data Types in TypeScript}
- Make this look more like math notation...
```

const nil: List = "nil";
function cons(hd: number, tl: List)

```
- Can now write code like this:
```

const L: List = cons(1, cons(2, nil));
if (L === nil) {
return R;
} else {
return cons(L.hd, R); // head of L followed by R
}

```

\section*{Inductive Data Types in TypeScript}
- Make this look more like math notation...
```

const nil: List = "nil";
function cons(hd: number, tl: List)

```
- Still not perfect:
- JS "===" (references to same object) does not match "="
```

cons(1, cons(2, nil)) === cons(1, cons(2, nil)) // false!

```
- would need to define an equal function for this

\section*{Inductive Data Types in TypeScript}
- Objects are equal if they were built the same way
```

type List = "nil"
| {kind: "cons", hd: number, tl: List};
function equal(L: List, R: List): boolean {
if (L === nil) {
return R === nil;
} else {
if (R === nil) {
return false;
} else {
return equal(L.tl, R.tl) \&\& L.hd === R.hd;
}
}
}

```

\section*{Functions}

\section*{Code Without Mutation}
- Saw all types of code without mutation:
- straight-line code
- conditionals
- recursion
- This is all that there is
- Saw TypeScript syntax for these already...

\section*{Code Without Mutation}

\section*{Example function with all three types}
```

// n must be a non-negative integer
function f(n: number): number {
if (n === 0) {
return 1;
} else {
return 2 * f(n - 1);
}

```
\}

\section*{Recall: Natural Numbers}
```

type }\mathbb{N}:= zero | succ(prev: \mathbb{N}

```
- Inductive definition of the natural numbers
```

zero
0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

```

\section*{Recall: Natural Numbers}
\[
\text { type } \mathbb{N}:=\text { zero } \mid \operatorname{succ}(\text { prev: } \mathbb{N})
\]
- Definition in TypeScript
```

type Nat = "zero" | {kind: "succ", prev: Nat};
const zero: Nat = "zero";
function succ(prev: Nat) {
return {kind: "succ", prev: prev};
}

```

\section*{Induction on Natural Numbers}

Could use a type that only allows natural numbers:
```

function f(n: Nat): number {
if (n === zero) {
return 1;
} else {
return 2 * f(n.prev); n.prev represents "n-1"
}
}

```

Cleaner definition of the function (though inefficient)

\section*{Structural Recursion}
- Inductive types: build new values from existing ones
- only zero exists initially
- build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of \(5=\operatorname{succ}(4)\)
- Structural recursion: recurse on smaller parts
- call on \(n\) recurses on n.prev
n.prev is the argument to the constructor (succ) used to create n
- guarantees no infinite loops!
limit to structural recursion whenever possible
- We will try to restrict ourselves to structural recursion
- for both math and TypeScript

\section*{Defining Functions in Math}
- As with data, we have both math and code functions
- our math notation looks like this:
\[
\text { func } f(n):=2 n+1 \quad \text { for any } n: \mathbb{N}
\]
- Reasoning is done with math
- tools are language independent
- We need recursion to define interesting functions
- we will primarily use structural recursion
- we will show this by example

\section*{Length of a List}
\[
\text { type List := nil | cons(hd: } \mathbb{Z} \text {, tl: List) }
\]
- Mathematical definition of length
\begin{tabular}{lll} 
func len(nil) & \(:=0\) & \\
\(\operatorname{len}(\operatorname{cons}(x, L))\) & \(:=1+\operatorname{len}(L)\) & for any \(x \in \mathbb{Z}\) \\
& & and any \(L \in\) List
\end{tabular}
- any list is either nil or cons( \(x, L\) ) for some \(x\) and \(L\)
- one of these two rules always applies
- an example of "pattern matching"

\section*{More Pattern Matching}
- Define a function by an exhaustive set of patterns
```

type Move:= {fwd:\mathbb{B},\textrm{amt}:\mathbb{N}}
func change({fwd: T, amt: n}) := n for any n:\mathbb{N}
change({fwd: F, amt: n}) := -n for any n:\mathbb{N}

```
- Move describes movement on the number line
- change(m : Move) says how the position changes

- one of these two rules always applies
every Move either has forward as T or F

\section*{Length of a List}
- Mathematical definition of length
```

func len(nil) := 0
len(cons(x, L)) := 1 + len(L)

```
for any \(x \in \mathbb{Z}\) and any \(L \in\) List
- Translation to TypeScript
```

function len(L: List): number {
if (L === nil) {
return 0;
} else {
return 1 + len(L.tl);
}
}

```

\section*{Concatenating Two Lists}
- Mathematical definition of concat(L, R)
\[
\begin{array}{cll}
\text { func concat(nil, } \mathrm{R}) & :=\mathrm{R} & \text { for any } \mathrm{R} \in \text { List } \\
\text { concat( } \operatorname{cons}(\mathrm{x}, \mathrm{~S}), \mathrm{R}) & :=\operatorname{cons}(\mathrm{x}, \operatorname{concat}(\mathrm{~S}, \mathrm{R})) & \text { for any } \mathrm{x} \in \mathbb{Z} \text { and } \\
& & \text { any } \mathrm{L}, \mathrm{R} \in \text { List }
\end{array}
\]
- concat( \(\mathrm{L}, \mathrm{R}\) ) defined by pattern matching on \(L\) (not \(R\) )


\section*{Concatenating Two Lists}
- Mathematical definition of concat
```

func concat(nil, R) := R for any R E List
concat(cons(x, L), R) := cons(x, concat(L, R)) for any x\in\mathbb{Z and}
any L, R \in List

```
- Translation to TypeScript
```

function concat(L: List, R: List): List {
if (L === nil) {
return R;
} else {
return cons(L.hd, concat(L.tl, R));
}
}

```

\section*{Formalizing a Specification}
- Sometimes the instructions are written in English
- English is often imprecise or ambiguous
- First step is to "formalize" the specification:
- translate it into math with a precise meaning
- How do we tell if the specification is wrong?
- specifications can contain bugs
- we can only test our definition on some examples
(formal) reasoning can only be used after we have a formal spec
- Usually best to start by looking at some examples

\section*{Definition of Sum of Values in a List}
- Sum of a List: "add up all the values in the list"
- Look at some examples...
```

L	$\operatorname{sum}(\mathrm{L})$
nil	0
$\operatorname{cons}(1$, nil $)$	1
$\operatorname{cons}(1, \operatorname{cons}(2$, nil) $)$	$1+2$
$\operatorname{cons}(1, \operatorname{cons}(2, \operatorname{cons}(3$, nil)))	$1+2+3$

```

\section*{Definition of Sum of Values in a List}
- Look at some examples...
\begin{tabular}{ll} 
L & \(\operatorname{sum}(\mathrm{L})\) \\
nil & 0 \\
\(\operatorname{cons(1,~nil)}\) & 1 \\
\(\operatorname{cons(1,\operatorname {cons}(2,\text {nil}))}\) & \(1+2\) \\
\(\operatorname{cons}(1, \operatorname{cons}(2, \operatorname{cons}(3\), nil \()))\) & \(1+2+3\)
\end{tabular}
- Mathematical definition
\begin{tabular}{rl} 
func sum(nil) & \(:=\) \\
\(\operatorname{sum}(\operatorname{cons}(x, L))\) & \(:=\)
\end{tabular}
for any \(x \in \mathbb{Z}\)
and any \(L \in\) List

\section*{Sum of Values in a List}
- Mathematical definition of sum
```

func sum(nil) := 0
sum(cons(x,L)) := x + sum(L)

```
for any \(\mathrm{x} \in \mathbb{Z}\) and any \(L \in\) List
- Translation to TypeScript
```

function sum(L: List): number {
if (L === nil) {
return 0;
} else {
return L.hd + sum(L.tl);
}
}

```

\section*{Definition of Reversal of a List}
- Reversal of a List: "same values but in reverse order"
- Look at some examples...
```

L
nil
cons(1, nil)
cons(1, cons(2, nil))
cons(1, cons(2, cons(3, nil)))

```
```

rev(L)
nil
cons(1, nil)
cons(2, cons(1, nil))
cons(3, cons(2, cons(1, nil)))

```

\section*{Definition of Reversal of a List}
- Look at some examples...
```

L
nil
cons(1, nil)
cons(1, cons(2, nil))
cons(1, cons(2, cons(3, nil)))

```
```

rev(L)
nil
cons(1, nil)
cons(2, cons(1, nil))
cons(3, cons(2, cons(1, nil)))

```
- Draw a picture?
reverse this too


\section*{Reversing A Lists}
- Draw a picture?

- Mathematical definition of rev
```

func rev(nil)
rev(cons(x, L)) :=

```
for any \(x \in \mathbb{Z}\) and any \(L \in\) List

\section*{Reversing A Lists}
- Mathematical definition of rev
\begin{tabular}{ll} 
func \(\operatorname{rev}(\) nil \()\) & \(:=\) nil \\
\(\operatorname{rev}(\operatorname{cons}(x, L))\) & \(:=\operatorname{concat}(\operatorname{rev}(L), \operatorname{cons}(x\), nil \()) \quad\) for any \(x \in \mathbb{Z}\) and \\
&
\end{tabular}
- Other definitions are possible, but this is simplest
- No help from reasoning tools until later
- only have testing and thinking about what the English means
- Always make definitions as simple as possible```

