CSE 331

Inductive Data & Recursion

Kevin Zatloukal

Recall: Basic Data Types

* |n math, the basic data types are “sets”

— sets are collections of objects called elements

— write x € S to say that “x” is an element of set “S”,
and x & S to say that it is not.

 Examples:

X EZ
X€EN
XER
XEB
XES
XES

X is an integer

X is a hon-negative integer (natural)

X is a real number
X is T or F (boolean)
X is a character

X is a string

— hon-standard names

Recall: Ways to Create New Types In Math

* Record Types {x:N, y:N}

* Union Types SSUN
— contains every object in either (or both) of those sets

* Tuple Types N X N

— pair of two numbers
— can do tuples of 3, 4, or more elements also

Recall: TypeScript type system

* TypeScript supports records, union, tuples

— supports real, boolean, and string
does not have integer, natural, or character types

— supports finite subsets of strings as unions of literal types

* Union types supported via type “narrowing”
— “if” statements can check types at run time
— TypeScript updates its type information for each branch

e Java and TypeScript are fundamentally different
— nominal vs structural typing

Inductive Data

Inductive Data Types

* Missing one more way of defining types
— arguably the most important

* Inductive data types are defined recursively
— combine union with recursion

Inductive Data Types

 Describe a set by ways of creating its elements
— each is a “constructor”

typeT:= A(x:Z) | Bx:Z, y:T)

— second constructor is recursive

— can have any number of arguments (even none)
will leave off the parentheses when there are none

 Examples of elements

A(D)
B(2,A(1)) in math, these are not function calls
B(3,B(2,A(1)))

Natural Numbers

type N := zero | succ(n:N)

 Inductive definition of the natural numbers

Zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!

Even Natural Numbers

type E := zero | two-more(n: E)

 |nductive definition of the even natural numbers

Z€ro

two-more(zero
() much better notation

two-more(two-more(zero))

N S~ N O

two-more(two-more(two-more(zero)))

Lists

type List := nil | cons(x:Z, L: List)

* Inductive definition of lists of integers

nil ~ (]
cons(3, nil) ~ [3] _
_ array notation
cons(2, cons(3, nil)) ~ (2, 3]
cons(1, cons(2, cons(3, nil))) ~ [1, 2, 3]

Inductive Data Types in TypeScript

* TypeScript does not natively support inductive types
— some “functional” languages do (e.g., Ocaml and ML)

* We will cobble them together as follows...

type List = “nil”
| {kind: “cons”, hd: number, tl: List};

— union of a literal type and a record type

— the “kind” field is technically not necessary
can already distinguish string from record
useful in other cases to distinguish different constructors

Inductive Data Type Design Pattern

typeT := A | B| C(x:Z) |D(x:Z,t:T)

 Implement in TypeScript as

* Another design pattern
— work around the limitations of TypeScript (no inductive types)
— everything above should also be “readonly”

Inductive Data Types in TypeScript

« Make this look more like math notation...

type List = “nil”
| {kind: “cons”, hd: number, tl: List};

const nil: List = “nil”;

function cons (hd: number, tl: List) {
return {kind: ”“cons”, hd: hd, tl: tl};

Inductive Data Types in TypeScript

* Make this look more like math notation...
const nil: List = “nil”;

function cons (hd: number, tl: List)

e Can now write code like this:
const L: List = cons(l, cons(2, nil));

if (L === nil) {
return R;
} else {
return cons(L.hd, R); // head of L followed by R

Inductive Data Types in TypeScript

* Make this look more like math notation...
const nil: List = “nil”;

function cons (hd: number, tl: List)

 Still not perfect:
— JS “===" (references to same object) does not match “="

cons (1, cons (2, nil)) === cons(l, cons (2, nil)) // false!

— would need to define an equal function for this

Inductive Data Types in TypeScript

* Objects are equal if they were built the same way

type List = “nil”
| {kind: “cons”, hd: number, tl: List};

function equal (L: List, R: List): boolean {

if (L === nil) {
return R === nil;
} else {
if (R === nil) {

return false;
} else {
return equal (L.tl, R.tl) && L.hd === R.hd;

Functions

Code Without Mutation

« Saw all types of code without mutation:
— straight-line code
— conditionals
— recursion

 This is all that there is

 Saw TypeScript syntax for these already...

Code Without Mutation

Example function with all three types

// n must be a non-negative integer
function f (n: number): number
i1f (n === 0) {
return 1;
} else {

return 2 * f(n - 1);

} What does this compute? 2"

Recall: Natural Numbers

type N := zero | succ(prev: N)

 Inductive definition of the natural numbers

Zero
succ(zero)
succ(succ(zero))

w N = O

succ(succ(succ(zero)))

Recall: Natural Numbers

type N := zero | succ(prev: N)

* Definition in TypeScript
type Nat = “zero” | {kind: “succ”, prev: Nat};
const zero: Nat = “zero”;

function succ(prev: Nat) {

return {kind: ”“succ”, prev: previ};

Induction on Natural Numbers

Could use a type that only allows natural numbers:

function f (n: Nat): number ({
if (n === zero) {
return 1;
} else {

return 2 * f (n.prev); n.prev represents “n - 1”

Cleaner definition of the function (though inefficient)

Structural Recursion

* Inductive types: build new values from existing ones
— only zero exists initially
— build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of 5 = succ(4)

e Structural recursion: recurse on smaller parts

— call on n recurses on n.prev
n.prev is the argument to the constructor (succ) used to create n

— guarantees no infinite loops!
limit to structural recursion whenever possible

* We will try to restrict ourselves to structural recursion
— for both math and TypeScript

Defining Functions in Math

* As with data, we have both math and code functions
— our math notation looks like this:

funcf(n) := 2n+1 foranyn:N

 Reasoning is done with math
— tools are language independent

* We need recursion to define interesting functions
— we will primarily use structural recursion
— we will show this by example

Length of a List

type List := nil | cons(hd: Z, tl: List)

 Mathematical definition of length

func len(nil) =0
len(cons(x, L)) 1 + len(L) forany x € Z
and any L € List

— any list is either nil or cons(x, L) for some x and L
— one of these two rules always applies
— an example of “pattern matching”

More Pattern Matching

* Define a function by an exhaustive set of patterns
type Move := {fwd : B, amt : N}

func change({fwd: T, amt: n}) = n foranyn: N
change({fwd: F, amt: n}) = -n foranyn: N

— Move describes movement on the number line

— change(m : Move) says how the position changes
{fwd: F, amt: 12}

@ @
x-12 X

— one of these two rules always applies
every Move either has forward as T or F

Length of a List

 Mathematical definition of length

func len(nil) =0
len(cons(x, L)) 1 + len(L)

* Translation to TypeScript

function len(L: List): number {
if (L === nil) {
return 0;
} else {
return 1 + len(L.tl);

forany x € Z
and any L € List

Level O
straight from the spec

Concatenating Two Lists

* Mathematical definition of concat(L, R)

func concat(nil, R) R for any R € List

cons(x, concat(S,R)) foranyx € Z and
any L, R € List

concat(cons(x, S), R)

— concat(L, R) defined by pattern matching on L (not R)

-
-

Concatenating Two Lists

e Mathematical definition of concat

func concat(nil, R) R for any R € List

cons(x, concat(L, R)) forany x € Z and
any L, R € List

concat(cons(x, L), R)

* Translation to TypeScript

function concat (L: List, R: List): List {
if (L === nil) {
return R; Level O
} else {
return cons(L.hd, concat(L.tl, R));

Formalizing a Specification

 Sometimes the instructions are written in English
— English is often imprecise or ambiguous

First step is to “formalize” the specification:
— translate it into math with a precise meaning

How do we tell if the specification is wrong?
— specifications can contain bugs

— we can only test our definition on some examples
(formal) reasoning can only be used after we have a formal spec

Usually best to start by looking at some examples

Definition of Sum of Values in a List

 Sum of a List: “add up all the values in the list”

* Look at some examples...

L sum(L)
nil 0
cons(1, nil) 1
cons(1, cons(2, nil)) 1+2

cons(1, cons(2, cons(3, nil))) 1+2+3

Definition of Sum of Values in a List

* Look at some examples...

L sum(L)
nil 0
cons(1, nil) 1
cons(1, cons(2, nil)) 1+2
cons(1, cons(2, cons(3, nil))) 1+2+3

« Mathematical definition

func sum(nil) =
sum(cons(x, L)) := forany x € Z
and any L € List

Sum of Values in a List

e Mathematical definition of sum

func sum(nil) =0
X + sum(L)

sum(cons(x, L))

* Translation to TypeScript

function sum(L: List): number {
if (L === nil) {
return 0;
} else {
return L.hd + sum(L.tl);

forany x € Z
and any L € List

Level O

Definition of Reversal of a List

e Reversal of a List: “same values but in reverse order”

* Look at some examples...

L rev(L)

nil nil

cons(1, nil) cons(1, nil)

cons(1, cons(2, nil)) cons(2, cons(1, nil))

cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))

Definition of Reversal of a List

* Look at some examples...

L rev(L)

nil nil

cons(1, nil) cons(1, nil)

cons(1, cons(2, nil)) cons(2, cons(1, nil))

cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))

 Draw a picture?

reverse this too
1 @

move 1 to end

Reversing A Lists

* Draw a picture? reverse this too
1 @

move 1 to end

e Mathematical definition of rev

func rev(nil) =

rev(cons(x, L)) := for any x € Z and
any L € List

Reversing A Lists

Mathematical definition of rev

func rev(nil) := nil

rev(cons(x, L)) := concat(rev(L), cons(x, nil)) for any x € Z and
any L € List

Other definitions are possible, but this is simplest

No help from reasoning tools until later
— only have testing and thinking about what the English means

Always make definitions as simple as possible

