
Inductive Data & Recursion
Kevin Zatloukal

CSE 331



Recall: Basic Data Types

• In math, the basic data types are “sets”
– sets are collections of objects called elements
– write x ∈	S to say that “x” is an element of set “S”,

and x ∉	S to say that it is not.

• Examples:
x ∈	ℤ x is an integer
x ∈	ℕ x is a non-negative integer (natural)
x ∈	ℝ x is a real number
x ∈	𝔹 x is T or F (boolean)
x ∈	𝕊 x is a character
x ∈	𝕊* x is a string

non-standard names



Recall: Ways to Create New Types In Math

• Record Types {x	:	ℕ,		y	:	ℕ}

• Union Types 𝕊* ∪ ℕ
– contains every object in either (or both) of those sets

• Tuple Types ℕ ⨉ ℕ
– pair of two numbers
– can do tuples of 3, 4, or more elements also



Recall: TypeScript type system

• TypeScript supports records, union, tuples
– supports real, boolean, and string

does not have integer, natural, or character types

– supports finite subsets of strings as unions of literal types

• Union types supported via type “narrowing”
– “if” statements can check types at run time
– TypeScript updates its type information for each branch

• Java and TypeScript are fundamentally different
– nominal vs structural typing



Inductive Data



Inductive Data Types

• Missing one more way of defining types
– arguably the most important

• Inductive data types are defined recursively
– combine union with recursion



Inductive Data Types

• Describe a set by ways of creating its elements
– each is a “constructor”

type T	:=		A(x	:	ℤ)		|		B(x	:	ℤ,		y	:	T)

– second constructor is recursive
– can have any number of arguments (even none)

will leave off the parentheses when there are none

• Examples of elements

A(1)
B(2,	A(1))
B(3,	B(2,	A(1)))

in math, these are not function calls



Natural Numbers

type ℕ :=		zero		|		succ(n	:	ℕ)

• Inductive definition of the natural numbers

zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!



Even Natural Numbers

type 𝔼 :=		zero		|		two-more(n	:	𝔼)

• Inductive definition of the even natural numbers

zero 0
two-more(zero) 2
two-more(two-more(zero)) 4
two-more(two-more(two-more(zero))) 6

much better notation



type List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Inductive definition of lists of integers

nil ≈	[]
cons(3,	nil) ≈	[3]
cons(2,	cons(3,	nil)) ≈	[2,	3]
cons(1,	cons(2,	cons(3,	nil))) ≈	[1,	2,	3]

Lists

array notation

1 2 3



Inductive Data Types in TypeScript

• TypeScript does not natively support inductive types
– some “functional” languages do (e.g., Ocaml and ML)

• We will cobble them together as follows…

type List = “nil”
| {kind: “cons”, hd: number, tl: List};

– union of a literal type and a record type
– the “kind” field is technically not necessary

can already distinguish string from record
useful in other cases to distinguish different constructors



Inductive Data Type Design Pattern

type T		:=		A		|		B		|		C(x	:	ℤ)		|	D(x	:	ℤ,	t	:	T)

• Implement in TypeScript as

type T = “A”

| “B”
| {kind: “C”, x: number}
| {kind: “D”, x: number, t: T};

• Another design pattern
– work around the limitations of TypeScript (no inductive types)
– everything above should also be “readonly”



Inductive Data Types in TypeScript

• Make this look more like math notation…

type List = “nil”

| {kind: “cons”, hd: number, tl: List};

const nil: List = “nil”;

function cons(hd: number, tl: List) {
return {kind: ”cons”, hd: hd, tl: tl};

}



Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: List = “nil”;

function cons(hd: number, tl: List)

• Can now write code like this:

const L: List = cons(1, cons(2, nil));

if (L === nil) {

return R;
} else {

return cons(L.hd, R);  // head of L followed by R
}



Inductive Data Types in TypeScript

• Make this look more like math notation…

const nil: List = “nil”;

function cons(hd: number, tl: List)

• Still not perfect:
– JS “===” (references to same object) does not match “=”

cons(1, cons(2, nil)) === cons(1, cons(2, nil))  // false!

– would need to define an equal function for this



Inductive Data Types in TypeScript

• Objects are equal if they were built the same way

type List = “nil”

| {kind: “cons”, hd: number, tl: List};

function equal(L: List, R: List): boolean {
if (L === nil) {

return R === nil;

} else {
if (R === nil) {

return false;
} else {

return equal(L.tl, R.tl) && L.hd === R.hd;
}

}

}



Functions



Code Without Mutation

• Saw all types of code without mutation:
– straight-line code
– conditionals
– recursion

• This is all that there is

• Saw TypeScript syntax for these already…



Code Without Mutation

Example function with all three types

// n must be a non-negative integer
function f(n: number): number {
if (n === 0) {
return 1;

} else {
return 2 * f(n – 1);

}
} What does this compute? 2n



Recall: Natural Numbers

type ℕ :=		zero		|		succ(prev:	ℕ)

• Inductive definition of the natural numbers

zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3



Recall: Natural Numbers

type ℕ :=		zero		|		succ(prev:	ℕ)

• Definition in TypeScript

type Nat = “zero” | {kind: “succ”, prev: Nat};

const zero: Nat = “zero”;

function succ(prev: Nat) {
return {kind: ”succ”, prev: prev};

}



Induction on Natural Numbers

Could use a type that only allows natural numbers:

function f(n: Nat): number {
if (n === zero) {
return 1;

} else {

return 2 * f(n.prev);
}

}

Cleaner definition of the function (though inefficient)

n.prev represents “n – 1”



Structural Recursion

• Inductive types:  build new values from existing ones
– only zero exists initially
– build up 5 from 4 (which is built from 3 etc.)

4 is the argument to the constructor of 5 = succ(4)

• Structural recursion:  recurse on smaller parts
– call on n recurses on n.prev

n.prev is the argument to the constructor (succ) used to create n

– guarantees no infinite loops!
limit to structural recursion whenever possible

• We will try to restrict ourselves to structural recursion
– for both math and TypeScript



Defining Functions in Math

• As with data, we have both math and code functions
– our math notation looks like this:

func f(n)		:=		2n	+	1 for	any	n	:	ℕ

• Reasoning is done with math
– tools are language independent

• We need recursion to define interesting functions
– we will primarily use structural recursion
– we will show this by example



Length of a List

type List	:=		nil		|		cons(hd:	ℤ,	tl:	List)

• Mathematical definition of length

func len(nil) :=		0
len(cons(x,	L)) :=		1	+	len(L) for	any	x	∈	ℤ

and	any	L	∈	List

– any list is either nil or cons(x, L) for some x and L
– one of these two rules always applies
– an example of “pattern matching”



More Pattern Matching

• Define a function by an exhaustive set of patterns

type Move	:=		{fwd	:	𝔹,	amt	:	ℕ}

func change({fwd: T, amt: n}) :=		n for	any	n :	ℕ
change({fwd: F, amt: n}) :=		-n for	any	n	:	ℕ

– Move describes movement on the number line
– change(m	:	Move) says how the position changes

– one of these two rules always applies
every Move either has forward as T or F

xx	– 12

{fwd:	F,	amt:	12}



Length of a List

• Mathematical definition of length

func len(nil) :=		0
len(cons(x,	L)) :=		1	+	len(L) for	any	x	∈	ℤ

and	any	L	∈	List

• Translation to TypeScript

function len(L: List): number {

if (L === nil) {

return 0;
} else {

return 1 + len(L.tl);
}

}

Level 0
straight from the spec



Concatenating Two Lists

• Mathematical definition of concat(L,	R)

func concat(nil, R) :=		R for	any	R	∈	List
concat(cons(x,	S),	R) :=		cons(x,	concat(S,	R)) for	any	x	∈	ℤ and

any	L,	R	∈	List

– concat(L,	R) defined by pattern matching on L (not R)

1 2 3 4 5 6

L

x S

R



Concatenating Two Lists

• Mathematical definition of concat

func concat(nil, R) :=		R for	any	R	∈	List
concat(cons(x,	L),	R) :=		cons(x,	concat(L,	R)) for	any	x	∈	ℤ and

any	L,	R	∈	List

• Translation to TypeScript

function concat(L: List, R: List): List {
if (L === nil) {

return R;
} else {

return cons(L.hd, concat(L.tl, R));

}
}

Level 0



Formalizing a Specification

• Sometimes the instructions are written in English
– English is often imprecise or ambiguous

• First step is to “formalize” the specification:
– translate it into math with a precise meaning

• How do we tell if the specification is wrong?
– specifications can contain bugs
– we can only test our definition on some examples

(formal) reasoning can only be used after we have a formal spec

• Usually best to start by looking at some examples



Definition of Sum of Values in a List

• Sum of a List: “add up all the values in the list”

• Look at some examples…

L sum(L)
nil 0
cons(1, nil) 1
cons(1, cons(2, nil)) 1+2
cons(1, cons(2, cons(3, nil))) 1+2+3
… …



Definition of Sum of Values in a List

• Look at some examples…

L sum(L)
nil 0
cons(1, nil) 1
cons(1, cons(2, nil)) 1+2
cons(1, cons(2, cons(3, nil))) 1+2+3
… …

• Mathematical definition

func sum(nil) :=		
sum(cons(x,	L)) :=		 for	any	x	∈	ℤ

and	any	L	∈	List



Sum of Values in a List

• Mathematical definition of sum

func sum(nil) :=		0
sum(cons(x,	L)) :=		x	+	sum(L) for	any	x	∈	ℤ

and	any	L	∈	List

• Translation to TypeScript

function sum(L: List): number {

if (L === nil) {

return 0;
} else {

return L.hd + sum(L.tl);
}

}

Level 0



Definition of Reversal of a List

• Reversal of a List: “same values but in reverse order”

• Look at some examples…

L rev(L)
nil nil
cons(1, nil) cons(1, nil)
cons(1, cons(2, nil)) cons(2, cons(1, nil))
cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))
… …



Definition of Reversal of a List

• Look at some examples…

L rev(L)
nil nil
cons(1, nil) cons(1, nil)
cons(1, cons(2, nil)) cons(2, cons(1, nil))
cons(1, cons(2, cons(3, nil))) cons(3, cons(2, cons(1, nil)))

• Draw a picture?

1 2 3

move 1 to end

reverse this too



Reversing A Lists

• Draw a picture?

• Mathematical definition of rev

func rev(nil) :=		
rev(cons(x,	L)) :=		 for	any	x	∈	ℤ and

any	L	∈	List

1 2 3

move 1 to end

reverse this too



Reversing A Lists

• Mathematical definition of rev

func rev(nil) :=		nil
rev(cons(x,	L)) :=		concat(rev(L),	cons(x,	nil)) for	any	x	∈	ℤ and

any	L	∈	List

• Other definitions are possible, but this is simplest

• No help from reasoning tools until later
– only have testing and thinking about what the English means

• Always make definitions as simple as possible


