CS E 33 1 | “bry re” by DALL-E
Data Types

Kevin Zatloukal

Correctness

Language Features

* No need to rush out and learn all of JS / TS

* We will introduce language features along with the
tools for reasoning about them

* Initially, we just need:
— straight-line code (const / return)
— conditionals (if)
— recursion

* Will take couple weeks to learn to reason about them

Language Features

e Next three lectures

1. Data types (data)
2. Functions (code)
3. Proofs (reasoning)

 Data is the natural place to start
— functions operate on data, so you need data first

— typically, the place to start when you design an app
more on this later

Language Features

* Reasoning is “math”

 For Data & Code, we will define
1. Math we use to think about them
2. How to model a specific programming language in math

* Reasoning is language independent
* Modeling is language specific
— e.g., how to do “string or number” in Java vs TypeScript

* | will use notation to distinguish which is which

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics type checking code reviews amateurs
1 no mutation “ libraries calculation
induction

2 local var.lable Floyd logic | pros

mutation
3 array / object “ “ rep invariants

mutation

Reasoning is what distinguishes professionals from amateurs

“Programming” by Trial & Error

* Beginning programmers often work by trial & error

1. try something
2. if that works, we’re done! (fine for level -1 only)

3.1fnot,goto 1

* Easy trick to catch this: take the computer away

— good programmers can still function
(can work on a programming problem at the beach!)

— why interviews are without a computer

 Work toward getting it right the first time
— carefully think through what the code is doing
— we will work on this all quarter (starting small)

Data Types

Basic Data Types

* |n math, the basic data types are “sets”

— sets are collections of objects called elements

— write x € S to say that “x” is an element of set “S”,
and x & S to say that it is not.

 Examples:

X EZ
XEN
XER
XEB
XES
XES

X is an integer

X is a hon-negative integer (natural)

X is a real number
X is T or F (boolean)
X is a character

X is a string

— hon-standard names

Basic Data Types

integer XEZ number no fractional part
natural x €N number non-negative
real x€R number
boolean x € B boolean
character XES string length 1
string X€ES string

we will often write
X:7Z instead of x EZ

Basic Data Types of JavaScript

e JavaScript includes the following types

number

string

boolean

null

undefined (another null)

Object

Array (special subtype of Object) we won’t use them
until week 5/6

* TypeScript also includes

unknown
any (turns off type checking — do not use!)

Record Types

JavaScript “Object” is something with “fields”

« JavaScript has special syntax for creating them

const p = {x: 1, y: 2};
console.log(p.x); // prints 1

* The term “object” is potentially confusing
— used for many things
— | prefer it as shorthand for “mathematical object”

Will refer to the math concept as a “record type”

Type Aliases

* TypeScript lets you give shorthand names for types

type Point = {x: number, y: number};
const p: Point = {x: 1, y: 2};

console.log(p.x); // prints 1

* Always include the types when declaring variables

— otherwise, TypeScript tries to “infer” the type, and
the result is sometimes not what you expect

* |In math, we will do this also

type Point := {x:N,y: N}

Ways to Create New Types In Math

* Record Types {x:N, y:N}

* Union Types SSUN
— contains every object in either (or both) of those sets

* Tuple Types N X N
— pair of two numbers
— can do tuples of 3, 4, or more elements also

Ways to Create New Types in TypeScript

* Record Types {x: number, y: number}
— anything with at least fields “x” and “y”

* Union Types string | number
— cahn be either one of these

* Tuple Types [number, number]

— at runtime, this is an array of length 2
— should really be “ readonly [number, number]”

likewise for “x” and “y” in the record above

Optional Values

* Records can have optional fields
type T = {a: number, b?: number};

const x: T = {a: 1};

— type of “x.b " is “ number | undefined”’

* Functions can have optional arguments

function f (a: number, b?: number): number {

console.log (b) ;

— type of “b " is “ number | undefined”’

Type Narrowing

* Conditionals can change the known types

function f (a: number, b?: number): number {

if (b === undefined) {

console.log (b missing ®”); // undefined
} else {

console.log (2 * b); // number

— type checker “narrows” the type of “ b ” in each branch

USe “===” and “!==”
instead of Use “==" and “!="

Checking Types at Run Time

X is undefined x === undefined
x is null x === null
X is a number typeof x === “number”
X is an integer ..and Math.floor (x) === x
X is a string typeof x === “string”
X is an object or array typeof x === “object”
X is an array Array.isArray (x)

Hard to check if x is a specific record type at runtime.
Much easier to let the type checker do this!

Checking Types at Run Time

”

* Can check if a field is present using “ in

* Allows you to distinguish between two record types:

type Tl = {a: number, b: number};
type T2 = {c: number, b: string}

const x: T1 | T2 = ..;

if ("a" in x) |
console.log(x.b); // number
} else {

console.log(x.b); // string

Structural vs Nominal Typing

» TypeScript uses “structural typing’

— sometimes called “duck typing”
“if it walks like a duck and quacks like a duck, it’s a duck”

type Tl = {a: number, b: number};
type T2 = {a: number, b: number};

const x: Tl = {a: 1, b: 2};

— can pass “ x ” to a function expecting a “ T2 ”!

Structural vs Nominal Typing

e Java uses “nominal typing’

class Tl { int a; int b; }
class T2 { int a; int b; }

Tl x = new T1();

— cannot pass “ x ” to a function expectinga “ T2 ”

* Libraries do not interoperate unless it was pre-planned

— create “adapters” to work around this
example of a design pattern used to work around language limitations

Literal Types

* A literal type includes only that literal

const x: “red” = “red”;

const y: 1 = 1;

* This is useful for creating small sets

type Color = “red” | “green” | “blue”;

const c: Color = “red”;

 Java works around this with “enums”

— objects that “represent” red, green, and blue
another design pattern

Java Enums

* Another design pattern built into Java:

enum Color {
RED, GREEN, BLUE

* Color.RED etc. are the only 3 instances of Color

« Cannot pass a Color where String is expected
— must add methods to convert between them

Inductive Data Types

* Create new types using records, tuples, and unions

— very useful but limited

— can only create types that are “finite” in some sense
if all our fields were boolean, the types would be finite sets

* One critical element is missing: recursion

* Inductive data types are defined recursively
— combine union with recursion

Inductive Data Types

 Describe a set by ways of creating its elements
— each is a “constructor”

typeT:= A(x:Z) | Bx:Z, y:T)

— second constructor is recursive

— can have any number of arguments (even none)
will leave off the parentheses when there are none

 Examples of elements

A(D)
B(2,A(1)) in math, these are not function calls
B(3,B(2,A(1)))

Natural Numbers

type N := zero | succ(n:N)

 Inductive definition of the natural numbers

Zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!

Even Natural Numbers

type E := zero | two-more(n: E)

 |nductive definition of the even natural numbers

Z€ro

two-more(zero
() much better notation

two-more(two-more(zero))

N S~ N O

two-more(two-more(two-more(zero)))

Lists

type List := nil | cons(x:Z, L: List)

* Inductive definition of lists of integers

nil ~ (]
cons(3, nil) ~ [3] _
_ array notation
cons(2, cons(3, nil)) ~ (2, 3]
cons(1, cons(2, cons(3, nil))) ~ [1, 2, 3]

“Lists are the original data structure for functional programming,
just as arrays are the original data structure of imperative programming”

Ravi Sethi

we will work with lists in HW2+ and arrays HW5+

