
Data Types
Kevin Zatloukal

CSE 331 “binary tree” by DALL-E

Correctness

Language Features

• No need to rush out and learn all of JS / TS

• We will introduce language features along with the
tools for reasoning about them

• Initially, we just need:
– straight-line code (const / return)
– conditionals (if)
– recursion

• Will take couple weeks to learn to reason about them

Language Features

• Next three lectures
1. Data types (data)
2. Functions (code)
3. Proofs (reasoning)

• Data is the natural place to start
– functions operate on data, so you need data first
– typically, the place to start when you design an app

more on this later

Language Features

• Reasoning is “math”

• For Data & Code, we will define
1. Math we use to think about them
2. How to model a specific programming language in math

• Reasoning is language independent
• Modeling is language specific

– e.g., how to do “string or number” in Java vs TypeScript

• I will use notation to distinguish which is which

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 no mutation “ libraries calculation
induction

2 local variable
mutation

“ “ Floyd logic

3 array / object
mutation

“ “ rep invariants

pros

Reasoning is what distinguishes professionals from amateurs

amateurs

“Programming” by Trial & Error

• Beginning programmers often work by trial & error
1. try something
2. if that works, we’re done!
3. If not, go to 1

• Easy trick to catch this: take the computer away
– good programmers can still function

(can work on a programming problem at the beach!)

– why interviews are without a computer

• Work toward getting it right the first time
– carefully think through what the code is doing
– we will work on this all quarter (starting small)

(fine for level -1 only)

Data Types

Basic Data Types

• In math, the basic data types are “sets”
– sets are collections of objects called elements
– write x ∈	S to say that “x” is an element of set “S”,

and x ∉	S to say that it is not.

• Examples:
x ∈	ℤ x is an integer
x ∈	ℕ x is a non-negative integer (natural)
x ∈	ℝ x is a real number
x ∈	𝔹 x is T or F (boolean)
x ∈	𝕊 x is a character
x ∈	𝕊* x is a string

non-standard names

Basic Data Types

Condition Math TypeScript Up to Us

integer x ∈	ℤ number no fractional part

natural x ∈	ℕ number non-negative

real x ∈	ℝ number

boolean x ∈	𝔹 boolean

character x ∈	𝕊 string length 1

string x ∈	𝕊* string

we will often write
x : ℤ instead of x ∈	ℤ

Basic Data Types of JavaScript

• JavaScript includes the following types

number

string
boolean

null
undefined (another null)
Object
Array (special subtype of Object)

• TypeScript also includes

unknown
any (turns off type checking — do not use!)

we won’t use them
until week 5/6

Record Types

• JavaScript “Object” is something with “fields”

• JavaScript has special syntax for creating them

const p = {x: 1, y: 2};
console.log(p.x); // prints 1

• The term “object” is potentially confusing
– used for many things
– I prefer it as shorthand for “mathematical object”

• Will refer to the math concept as a “record type”

Type Aliases

• TypeScript lets you give shorthand names for types

type Point = {x: number, y: number};

const p: Point = {x: 1, y: 2};
console.log(p.x); // prints 1

• Always include the types when declaring variables
– otherwise, TypeScript tries to “infer” the type, and

the result is sometimes not what you expect

• In math, we will do this also

type Point		:=		{x	:	ℕ,	y	:	ℕ}

Ways to Create New Types In Math

• Record Types {x	:	ℕ,		y	:	ℕ}

• Union Types 𝕊* ∪ ℕ
– contains every object in either (or both) of those sets

• Tuple Types ℕ ⨉ ℕ
– pair of two numbers
– can do tuples of 3, 4, or more elements also

Ways to Create New Types in TypeScript

• Record Types {x: number, y: number}
– anything with at least fields “x” and “y”

• Union Types string | number
– can be either one of these

• Tuple Types [number, number]
– at runtime, this is an array of length 2
– should really be “ readonly [number, number] ”

likewise for “x” and “y” in the record above

Optional Values

• Records can have optional fields

type T = {a: number, b?: number};

const x: T = {a: 1};

– type of “ x.b ” is “ number | undefined ”

• Functions can have optional arguments

function f(a: number, b?: number): number {
console.log(b);

}

– type of “ b ” is “ number | undefined ”

Type Narrowing

• Conditionals can change the known types

function f(a: number, b?: number): number {

if (b === undefined) {
console.log(“b missing L”); // undefined

} else {
console.log(2 * b); // number

}

}

– type checker “narrows” the type of “ b ” in each branch

Use “===” and “!==”
instead of Use “==” and “!=”

Checking Types at Run Time

Condition Code

x is undefined x === undefined

x is null x === null

x is a number typeof x === “number”

x is an integer … and Math.floor(x) === x

x is a string typeof x === “string”

x is an object or array typeof x === “object”

x is an array Array.isArray(x)

Hard to check if x is a specific record type at runtime.
Much easier to let the type checker do this!

Checking Types at Run Time

• Can check if a field is present using “ in ”

• Allows you to distinguish between two record types:

type T1 = {a: number, b: number};
type T2 = {c: number, b: string}

const x: T1 | T2 = …;
if ("a" in x) {
console.log(x.b); // number

} else {
console.log(x.b); // string

}

Structural vs Nominal Typing

• TypeScript uses “structural typing”
– sometimes called “duck typing”

“if it walks like a duck and quacks like a duck, it’s a duck”

type T1 = {a: number, b: number};
type T2 = {a: number, b: number};

const x: T1 = {a: 1, b: 2};

– can pass “ x ” to a function expecting a “ T2 ”!

Structural vs Nominal Typing

• Java uses “nominal typing”

class T1 { int a; int b; }

class T2 { int a; int b; }

T1 x = new T1();

– cannot pass “ x ” to a function expecting a “ T2 ”

• Libraries do not interoperate unless it was pre-planned
– create “adapters” to work around this

example of a design pattern used to work around language limitations

Literal Types

• A literal type includes only that literal

const x: “red” = “red”;

const y: 1 = 1;

• This is useful for creating small sets

type Color = “red” | “green” | “blue”;

const c: Color = “red”;

• Java works around this with “enums”
– objects that “represent” red, green, and blue

another design pattern

Java Enums

• Another design pattern built into Java:

enum Color {
RED, GREEN, BLUE

}

• Color.RED etc. are the only 3 instances of Color

• Cannot pass a Color where String is expected
– must add methods to convert between them

Inductive Data Types

• Create new types using records, tuples, and unions
– very useful but limited
– can only create types that are “finite” in some sense

if all our fields were boolean, the types would be finite sets

• One critical element is missing: recursion

• Inductive data types are defined recursively
– combine union with recursion

Inductive Data Types

• Describe a set by ways of creating its elements
– each is a “constructor”

type T	:=		A(x	:	ℤ)		|		B(x	:	ℤ,		y	:	T)

– second constructor is recursive
– can have any number of arguments (even none)

will leave off the parentheses when there are none

• Examples of elements

A(1)
B(2,	A(1))
B(3,	B(2,	A(1)))

in math, these are not function calls

Natural Numbers

type ℕ :=		zero		|		succ(n	:	ℕ)

• Inductive definition of the natural numbers

zero 0
succ(zero) 1
succ(succ(zero)) 2
succ(succ(succ(zero))) 3

The most basic set we have is defined inductively!

Even Natural Numbers

type 𝔼 :=		zero		|		two-more(n	:	𝔼)

• Inductive definition of the even natural numbers

zero 0
two-more(zero) 2
two-more(two-more(zero)) 4
two-more(two-more(two-more(zero))) 6

much better notation

type List		:=		nil		|		cons(x	:	ℤ,		L	:	List)

• Inductive definition of lists of integers

nil ≈	[]
cons(3,	nil) ≈	[3]
cons(2,	cons(3,	nil)) ≈	[2,	3]
cons(1,	cons(2,	cons(3,	nil))) ≈	[1,	2,	3]

Lists

array notation

1 2 3

“Lists are the original data structure for functional programming,
just as arrays are the original data structure of imperative programming”

Ravi Sethi

we will work with lists in HW2+ and arrays HW5+

