
Correctness
Kevin Zatloukal

CSE 331

Scale of Modern Software

Analogy to physical objects
• 100 well-tested LOC = nice cabinet
• 2,500 LOC = room with furniture
• 2,500,000 LOC = 1000 rooms =

North Carolina class WW2 battleship

=
entire British Navy in WW2

Correctness Is Harder in Larger Programs

• Much harder to write large programs correctly
– bugs in N-line program grow like Θ(N log N) [Jones, ‘12]
– time to write programs grows like Θ(N1.05) [Boehm, ‘81]

• Parts are more interdependent
– correctness of any 100 lines depends on 1,000s of others

• Debugging becomes incredibly difficult
– a mistake in one “ship” causes another to sink

• Small probability cases become high probability
– even “impossible” cases happen

Correctness Is Harder in Larger Programs

• Must work harder to ensure each piece is correct
– check every piece more times to find mistakes

• Learn proper technique on smaller programs
– much easier to learn now, rather than later

Course Goals

To teach you to the skills necessary to write programs at
the level of a professional software engineer

Specifically, we will focus on writing code that is
• correct
• easy to understand
• easy to change
• modular

We will set an extremely high bar for correctness

use this time to develop
proper technique

Quality is Harder in Large Programs

• Natural state of software is “spaghetti code”
– all the parts are interdependent
– cannot be disentangled

• Becomes impossible to change
– any change to any part breaks some other part

• Use modularity to fight against interdependence
– requires constant effort

Standard Techniques for Correctness

Standard practice uses three techniques:

• Testing: try it on a well-chosen set of examples

• Tools: type checker, libraries, etc.

• Reasoning: think through your code carefully
– have another person do the same (“code review”)

Each removes ~2/3rd bugs but of different kinds
Combination removes >97% of bugs

Which Ones and How Much

• The first question to ask yourself:

How much of this is needed for my program?

• Correctness is easier for some programs vs others

• Personally, I break this into 5 cases…
– “levels” of difficulty
– (I made this terminology up)

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 ?

1 ?

2 ?

3 ?

Level -1

• Small number of inputs / configurations

• Just check them all!
– this is the right answer

• This category does not require a programmer
– anyone can check the answer
– programming is hard, so skip it when you can

Level -1

• Coding is the wrong tool for this job

• Examples with one input / configuration:

– using code to draw a specific picture (use Illustrator)
c.f. drawing a picture in LaTeX

– using code to transform specific data (use Excel)
e.g., stack three columns of numbers into one column

Level -1

• Can happen as part of a larger application

• iPhone development lets you draw the UI:

Level -1

Level -1

• Can happen as part of a larger application
– may require code but not deep reasoning

• Happens more often than you think
– individual function can be level -1

e.g., two boolean inputs (only 4 configurations)

– quite common with UI
e.g., when I click the button, it should say “hi”

• Be on the lookout for these cases
– save yourself work by spotting them

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 ?

1 ?

2 ?

3 ?

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 ?

2 ?

3 ?

Level 0

• Instructions say exactly how to calculate answer
– we are just translating math into code

• Still easy to make mistakes
– too many inputs to test them all
– need to additional ways of checking for bugs

Non-programming Example

• Important to calculate grades correctly!

• The syllabus says the formula
– ask someone else to double-check (“code review”)
– spot check some of them

Programming Example 1

• Implement absolute value

• Specification says |x| = x if x ≥ 0 and –x otherwise
– definition is an “if” statement

function abs(x: number): number {

if (x >= 0) {
return x;

} else {

return –x;
}

}

Programming Example 2

• Implement factorial

• Specification says 0! = 1 and (n+1)! = (n+1)*n!
– definition is recursive

function factorial(n: number): number {

if (n === 0) {
return 1;

} else {

return n * factorial(n-1);
}

}

Level 0

• Arise more often than you think
– sometimes the only way to write a specification is to

spell out how to calculate the answer

• To make sure its correct, we need:
– code review: second set of eyes
– type checker: third set of eyes (so to speak)
– some tests

can’t test every case, so we need to pick the right ones
(more on this next lecture…)

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 ?

2 ?

3 ?

Another Idea

• Why not ask the AI if the code is correct?

• General case is impossible for any program
– see Rice’s Theorem (CSE 311)

Programming Example 3

• Implement “maximum of a and b”

• Spec 1: a if a ≥ b and b otherwise
– definition is an “if” statement
– says how to compute the answer

• Spec 2: “x such that (x = a or x = b) and x ≥ a and x ≥ b”
– now level 1
– some reasoning is required
– (an example of a “declarative” definition)

Correctness Levels

Level Description Testing Tools Reasoning

-1 small # of inputs exhaustive

0 straight from spec heuristics type checking code reviews

1 no mutation “ libraries calculation
induction

2 local variable
mutation

“ “ Floyd logic

3 array / object
mutation

“ “ rep invariants

Reminders

• Now is the time to practice proper technique
– much harder to learn technique on hard problems

• We will set an extremely high bar for correctness

• Temptation to use shortcuts never goes away
– e.g., skipping reasoning (or tools/testing) on level 0+

• Work skipped now costs 5x as much later
– much more likely as the code base gets bigger
– debugging later is harder and more painful

Tools

JavaScript and TypeScript

• We will use TypeScript this quarter
– adds a type system to JavaScript (JS)
– tsc checks types and then removes them (to get JS)

• We will learn the language slowly over the quarter
– there is no hurry

Type Checkers

• The main part of “Tools” is the type checker

• Type Checkers are very useful for finding bugs
– another set of “eyes” helping us find them
– you have probably learned this already

• TypeScript and Java have different type systems…
– they can catch different bugs for us

Type Checkers

Java and TS differ in what properties they guarantee

• In many areas, TypeScript is more capable:

Condition Java TypeScript

x is a string or number Object string | number

x is a string or null String string | null

x is a string — string

x is a string array String[] string[]

… immutable string array — readonly string[]

Type Checkers

Java and TS differ in what properties they guarantee

• In many areas, TypeScript is more capable.

• In Java, we are responsible for
– making sure the argument is really String or Number
– making sure references are not null
– making sure arrays are not modified

• In TypeScript, the type checker can do that for us

Type Checkers

Java and TS differ in what properties they guarantee

• In some areas, Java is more capable:

Condition Java TypeScript

x is a number float number

x is an integer int –

x is a non-negative integer — –

x is 1, 2, 3, or 4 — 1 | 2 | 3 | 4

Type Checkers

Java and TS differ in what properties they guarantee

• In some areas, Java is more capable

• In TypeScript, we are responsible for
– making sure the argument is really an integer

• JavaScript uses floating point for all numbers
– can accurately store anything from a Java int
– but we get no help from the type checker

