CSE 331

Correctness

Kevin Zatloukal

Scale of Modern Software

Analogy to physical objects
100 well-tested LOC = nice cabinet
« 2,500 LOC = room with furniture

« 2,500,000 LOC =1000 rooms =

e, e

North Carolina class WW?2 battleship

Correctness Is Harder in Larger Programs

Much harder to write large programs correctly
— bugs in N-line program grow like O(N log N) [Jones, ‘12]
— time to write programs grows like O(N1-°%) [Boehm, ‘81]

Parts are more interdependent
— correctness of any 100 lines depends on 1,000s of others

Debugging becomes incredibly difficult
— a mistake in one “ship” causes another to sink

Small probability cases become high probability
— even “impossible” cases happen

Correctness Is Harder in Larger Programs

* Must work harder to ensure each piece is correct
— check every piece more times to find mistakes

* Learn proper technique on smaller programs
— much easier to learn now, rather than later

Course Goals

To teach you to the skills necessary to write programs at
the level of a professional software engineer

Specifically, we will focus on writing code that is

use this time to develop
proper technique

» |correct|

e easy to understand
* easy to change

* modular

We will set an extremely high bar for correctness

Quality is Harder in Large Programs

* Natural state of software is “spaghetti code”
— all the parts are interdependent
— cannot be disentangled

 Becomes impossible to change
— any change to any part breaks some other part

* Use modularity to fight against interdependence
— requires constant effort

Standard Techniques for Correctness

Standard practice uses three techniques:
* Testing: try it on a well-chosen set of examples
* Tools: type checker, libraries, etc.

* Reasoning: think through your code carefully
— have another person do the same (“code review”)

Each removes ~2/3' bugs but of different kinds
Combination removes >97% of bugs

Which Ones and How Much

* The first question to ask yourself:

How much of this is needed for my program?

e Correctness is easier for some programs vs others

* Personally, | break this into 5 cases...
— “levels” of difficulty
— (I made this terminology up)

Correctness Levels

small # of inputs exhaustive
0 ?
1 ?
2 ?

Level -1

 Small number of inputs / configurations

* Just check them all!
— this is the right answer

* This category does not require a programmer
— anyone can check the answer
— programming is hard, so skip it when you can

Level -1

* Coding is the wrong tool for this job

 Examples with one input / configuration:

— using code to draw a specific picture (use lllustrator)
c.f. drawing a picture in LaTeX

— using code to transform specific data (use Excel)
e.g., stack three columns of numbers into one column

Level -1

e Can happen as part of a larger application

* iPhone development lets you draw the Ul:

S activity_campus_paths_mainxml % | (€ CampusPathsMainActivityjava * >
= o
Palette Q #- 1~ [E E Bl ©- ONexuss- m26- @ AappTheme @language- LI+ Properties Q= |#- 1 |5
A . S e T 5
Al Ab TextView @ 5| ix 8 8- |= I- Ox@®= W BA o button
Widgets [Button
Tedt %) ToggleButton - o ucx sox
Layouts CheckBox
Containers RadioButton
Images % CheckedTextView o
Date = Spinner
Transitions C ProgressBar v S
Advanced = ProgressBar (Horizont: CSE331-17su Campus Paths D
Google - SeekBar
Design - SeekBar (Discrete) 8
AppCompat B3 QuickContactBadge
RatingBar
 Switch
layout . _content
g layout_hei..._content
BUTTON Button
style
backgrou.]
Eoten g backgrou... |
Component Tree Loadl e stateListA... ‘
 ConstraintLayout elevation :’
ok button
visibility | none
g onClick | none
TextView
text Button ‘
Ftext]
' contentD...
textAp... |idget.Button
Favorite Attributes
visibility [none
&>
z
g
S View all properties = =
£
Design | Text -

4 Eventlog [E] Gradle Console

Level -1

Mckay Wrigley &
@mckaywrigley

Greg Brockman (@gdb) of OpenAl just demoed GPT-4 creating a working
website from an image of a sketch from his notebook.

It’s the coolest thing I’ve *ever* seen in tech.
If you extrapolate from that demo, the possibilities are endless.

A glimpse into the future of computing.

Level -1

e Can happen as part of a larger application
— may require code but not deep reasoning

 Happens more often than you think

— individual function can be level -1
e.g., two boolean inputs (only 4 configurations)

— quite common with Ul
e.g., when | click the button, it should say “hi”

e Be on the lookout for these cases
— save yourself work by spotting them

Correctness Levels

small # of inputs exhaustive
0 ?
1 ?
2 ?

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics type checking code reviews
1 ?
2 ?

Level O

* |nstructions say exactly how to calculate answer
— we are just translating math into code

* Still easy to make mistakes
— too many inputs to test them alli
— need to additional ways of checking for bugs

Non-programming Example

* Important to calculate grades correctly!

Homework Extra Credit Midterm Final Combined
fx | =0.6*GA4+0.15%14+0.25%)4 E 87.5%1 1! 64.0%E 91.6%I0.25*J2]
91.4% 1 87.9% 70.8% 85.8%
86.2% 5 93.0% 62.0% 81.8%
96.5% 1 60.9% 69.0% 84.4%
98.2% 0 88.6% 91.3% 95.0%
86.3% 0 91.5% 63.0% 81.3%

* The syllabus says the formula
— ask someone else to double-check (“code review”)
— spot check some of them

Programming Example 1

* Implement absolute value

* Specification says |x| = x if x 2 0 and -x otherwise
— definition is an “if” statement

function abs (x: number): number /{
if (x >= 0) {
return x;
} else {

return —X;

Programming Example 2

* Implement factorial

e Specification says 0! =1 and (h+1)! = (n+1)*n!
— definition is recursive

function factorial (n: number) : number ({
if (n === 0) {
return 1;
} else {

return n * factorial (n-1);

Level O

* Arise more often than you think

— sometimes the only way to write a specification is to
spell out how to calculate the answer

* To make sure its correct, we need:
— code review: second set of eyes
— type checker: third set of eyes (so to speak)

— some tests
can’t test every case, so we need to pick the right ones
(more on this next lecture...)

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics type checking code reviews
1 ?
2 ?

Another Idea

 Why not ask the Al if the code is correct?

* General case is impossible for any program
— see Rice’s Theorem (CSE 311)

) Mckay Wrigley &
< t’; @mckaywrigley
Greg Brockman (@gdb) of OpenAl just demoed GPT-4 creating a working
website from an image of a sketch from his notebook.

It’s the coolest thing I've *ever* seen in tech.

If you extrapolate from that demo, the possibilities are endless.

A glimpse into the future of computing.

Programming Example 3

* Implement “maximum of a and b”

« Spec 1:aif a 2 b and b otherwise
— definition is an “if” statement
— says how to compute the answer

e Spec 2: “xsuchthat(x=aorx=b)andx2aandx2b"
— now level 1
— some reasoning is required
— (an example of a “declarative” definition)

Correctness Levels

small # of inputs exhaustive
0 straight from spec heuristics type checking code reviews
1 no mutation “ libraries calculation
induction
2 local variable “ “ Floyd logic
mutation
3 array / object “ “ rep invariants

mutation

Reminders

Now is the time to practice proper technique
— much harder to learn technique on hard problems

We will set an extremely high bar for correctness

Temptation to use shortcuts never goes away
— e.g., skipping reasoning (or tools/testing) on level O+

Work skipped now costs b5x as much later
— much more likely as the code base gets bigger
— debugging later is harder and more painful

Tools

JavaScript and TypeScript

 We will use TypeScript this quarter

— adds a type system to JavaScript (JS)
— tsc checks types and then removes them (to get JS)

* We will learn the language slowly over the quarter
— there is no hurry

Type Checkers

 The main part of “Tools” is the type checker

* Type Checkers are very useful for finding bugs
— another set of “eyes” helping us find them
— you have probably learned this already

* TypeScript and Java have different type systems...
— they can catch different bugs for us

Type Checkers

Java and TS differ in what properties they guarantee

* In many areas, TypeScript is more capable:

X is a string or number Object string | number
X is a string or null String string | null
X is a string — string
X is a string array String[] string[]

... immutable string array - readonly string[]

Type Checkers

Java and TS differ in what properties they guarantee

* In many areas, TypeScript is more capable.

* |n Java, we are responsible for

— making sure the argument is really String or Number
— making sure references are not null
— making sure arrays are not modified

* In TypeScript, the type checker can do that for us

Type Checkers

Java and TS differ in what properties they guarantee

* |n some areas, Java is more capable:

X is a number float number
X is an integer int —
X is @ nhon-negative integer — -

xisl, 2,63, or4 — 1 1 21 3| 4

Type Checkers

Java and TS differ in what properties they guarantee
* |n some areas, Java is more capable

* In TypeScript, we are responsible for
— making sure the argument is really an integer

e JavaScript uses floating point for all numbers
— can accurately store anything from a Java int
— but we get no help from the type checker

