
CSE 331: Software Design & Implementation
Homework 9 (due Friday, June 2nd at 11:00 PM)

In this assignment, you will implement the client and server portions of an application described below. This
assignment consists entirely of coding work. Submit your final version to “HW9 Coding” on Gradescope. Turning
in your work for this assignment is a little trickier than usual, so follow these steps carefully!:

• cd into the directory that contains the /client and /server directories.

• Delete the node_modules directories from each directory (you can do this manually or use the command:
rm -r client/node_modules && rm -r server/node_modules).

• Generate a zipped file containing both of these folders On Mac you can run: zip -r submission.zip
client/ server/. On Windows you can select both folders, right click, and select ’Send to’ > ’Com-
pressed (zipped) folder’. You’ll want to rename the zip that is created to ’submission.zip’.

• Go to Gradescope and select the submission.zip file that was created by running the last command.

• Make sure you get all the autograder points! If you have an issue and need to try something else you’ll
need to run npm install --no-audit in both of the directories again to get your node_modules back.

You can start by checking out the starter code using the command:

git clone https://gitlab.cs.washington.edu/cse331-23sp-materials/hw-draft.git

Install the node modules, with npm install --no-audit, in both the client and server directories.

1. Arts & Drafts (100 points)
You and a friend went trick-or-treating together, but your friend didn’t have their own bag for storing their
candy, so all the candy went into your bag. Afterward, you brought the bag home and needed to find some way
to split it fairly with your friend, who was now at their home. Together, you decided that the fairest option
would be to have a candy draft, where you take turns picking the next candy from those remaining.

Since you aren’t together at the same place, you will need to write a web application that you can both
use to carry out the draft. It occurred to you later the application would be useful for other kinds of drafts, so
you decided to make a general application that can be used for drafting any items, not just candy.

Write a web application, with both client and server parts, that allows one user to create and then multiple
users to participate in a draft. The required functionality is spelled out the next page.

When implementing your application, it is, as usual, a good idea to crash if the program has a bug, but
you are not allowed to crash on invalid inputs from the user. (Those are not bugs!) You must either show an
error message or prevent the user from submitting invalid inputs.

Thoroughly test your application. Like in homework 8, there are UI portions of this assignment that are
best tested with manual testing (which we will, of course, perform on your app), but other areas can and should
have unit tests written for them and turned in with your work.

When grading we will be looking for high quality code (including design, documentation, testing) and app
functionality (including error handling).

2. Extra Credit: Feeding Time at the New (0 points)
Add any new features that seem useful! You will get points for any feature that works correctly and seems like
it would be valuable to the user.

1



Required Functionality
This section describes the minimum, required functionality, along with screenshots with one way of providing
that functionality to the user. You do not need to make your application look exactly like this, nor must the
functionality be identical. It is fine to make changes that make the application more functional. This video
also includes a walk-through of what our final product looks like.

Create a New Draft
Users must be able to create a new draft, specifying the lists of the items available for drafting and the names
of the drafters. You must support drafts that complete with some items still not drafted. In this version, we do
that by asking the user the number of rounds (i.e., the number of picks for each drafter).

This version asks the user to also give their own name ("Drafter"), so that they can jump directly into the draft
once they create it. However, it is also reasonable to have the user enter their name later. (That would also
allow a user who is not participating in the draft to create it.)

Join an Existing Draft
Users must be able to join an already-created draft. One way that this could work is that the the application
could issue a unique "ID" for the draft after it is created. The draft creator could pass this information along
to the drafters, who could enter it in, along with their names, in order to join the draft.

Note that the "Drafter" text area is shown separately in both of these screenshots to show that it is relevant to
both of these functionalities, but it is reasonable to only include one area for this as the demo video shows.

(Continued on the next page. . . )

2

https://youtu.be/BRYVtcYQmiM 


See the Draft Status
Once users join the draft, they should be able to see all the the picks made so far (initially none), along with
who is making the next pick.

This version shows the ID of the draft at the top, but that is not necessary.
The application must either allow the user to update the list of picks (to see any new picks that have been

made) or must automatically update it periodically (e.g., every few seconds).

Make a Draft Pick
If it is that user’s turn, they must be able to make their choice.

Show Completed Draft
Once all picks have been made, all drafters (and anyone watching the draft but not participating) should see
that the draft is over.

3


