Recall from last time...

Is this solution **correct**?

```java
int indexOfMaximum(int[] arr, int n) {
    int maxValue = arr[0];
    int maxIndex = 0;
    for (int i = 1; i < n; i++) {
        if (arr[i] > maxValue) {
            maxValue = arr[i];
            maxIndex = i;
        }
    }
    return maxIndex;
}
```
Reasoning about code

Idea: determine what *facts* are true at each line of the program

- We would like to know:
 - at the end, `maxIndex` is index of the maximum element
 - at the end, negatives before zeros before positives in `arr`

- Get there by understanding what is true at each line until end
 - then check that those facts that are true at the end include all the things we require
Why do this?

• Essential for building **high quality** programs
 – allows us to inspect code to check correctness
 – need all three: tools, *inspection*, & testing
 – inspection is even the most effective of the three

• Essential for building **high complexity** programs
 – allows us to build modular programs
 • each module has assumptions about how it will be used
 – misunderstandings btw module writers will cause bugs
 – assumptions must be clearly stated (and inspected)
Approaches

- We will discuss two approaches
 - forward reasoning: start at the top and work down
 - backward reasoning: start at the end and work up

- Plan:
 1. intuitive version (by example)
 2. formal definitions & rules
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]

\[
y = x + 2;
\]

\[
z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) $w \geq 1$

\[
x = 2 \times w;
\]
\[
// \ x \geq 2 \times 1 = 2
\]
\[
y = x + 2;
\]
\[
z = y / 2;
\]

What can we say at the end about z?
Example of Forward Reasoning

Suppose we initially know (or assume) $w \geq 1$

\[
x = 2 \times w; \\
// \ x \geq 2 \times 1 = 2
\]

\[
y = x + 2; \\
// \ y \geq 2 + 2 = 4
\]

\[
z = y / 2;
\]

What can we say at the end about z?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]
\[
// \ x \geq 2 \times 1 = 2
\]
\[
y = x + 2;
\]
\[
// \ y \geq 2 + 2 = 4
\]
\[
z = y / 2;
\]
\[
// \ z \geq 4 / 2 = 2
\]

What can we say at the end about \(z \)? \(z \geq 2 \)
Forward Reasoning

• Forward reasoning:
 – informally, simulates the code (for all inputs at once)
 – formally, determine what follows from initial assumptions

• This is the way most programmers *inspect* their code

• Advantages and disadvantages:
 – intuitive
 – introduces (many) irrelevant facts
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

$$x = 2 \times w;$$

$$y = x + 2;$$

$$z = y / 2;$$

// $z \geq 1$
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

```
x = 2 * w;
y = x + 2;
// y / 2 \geq 1 or equivalently y \geq 2
z = y / 2;
// z \geq 1
```
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

\[
\begin{align*}
x &= 2 \times w; \\
&\quad // \ x + 2 \geq 2 \ or \ equivalently \ x \geq 0 \\
y &= x + 2; \\
&\quad // \ y / 2 \geq 1 \ or \ equivalently \ y \geq 2 \\
z &= y / 2; \\
&\quad // \ z \geq 1
\end{align*}
\]
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

```plaintext
// 2 * w >= 0 or equivalently w >= 0
x = 2 * w;
// x + 2 >= 2 or equivalently x >= 0
y = x + 2;
// y / 2 >= 1 or equivalently y >= 2
z = y / 2;
// z >= 1
```
Backward Reasoning

• Backward reasoning:
 – determines sufficient conditions for an end result
 • e.g., assumptions needed for correctness

• Advantages and disadvantages:
 – less intuitive
 – determines exactly what is necessary to achieve the goal
 – gives you another (powerful) way to reason about code
Our approach

• We will take a **methodical** approach to reasoning about code
 – spell everything out in detail to avoid any misunderstanding
 – (you can move more quickly as you get practice)

• Hoare Logic
 – named after its inventor, Sir Anthony Hoare (inventor of quicksort)
 – considers just assignments, if-statements, and while-loops
 • everything else can be built out of these
 – we will consider just integer-valued variables
 • for Java, we will need floats, strings, objects, etc.

• This lecture: assignments & if-statements; Next lecture: loops
Terminology

• The *program state* is the values of all the (relevant) variables

• An *assertion* is a logical formula referring to the program state (e.g., contents of variables) at a given point

• An assertion *holds* for a program state if the formula is true when those values are substituted for the variables

• An assertion before the code is a *precondition*
 – these represent assumptions about when that code is used

• An assertion after the code is a *postcondition*
 – these represent what we want the code to accomplish
Notation

• Instead of writing assertions as comments, Hoare logic uses {..}
 – since Java code also has {..}, I will use {{...}}
 – e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math not Java
 – you can use the usual math notation
 • (e.g., = instead of == for equals)
 – purpose is communication with other humans (not computers)
 – we will need and, or, not as well
 • can also write use ∧ (and) ∨ (or) etc.

• The Java language also has assertions (assert statements)
 – throws an exception if the condition does not evaluate true
 – we will discuss these more later in the course
Hoare Logic

• A Hoare triple is two assertions and one piece of code:
 \[\{ \{ P \} \} \ S \ \{ \{ Q \} \} \]
 – \(P \) the precondition
 – \(S \) the code
 – \(Q \) the postcondition

• A Hoare triple \(\{ \{ P \} \} \ S \ \{ \{ Q \} \} \) is called valid if:
 – in any state where \(P \) holds, executing \(S \) produces a state where \(Q \) holds
 – i.e., if \(P \) is true before \(S \), then \(Q \) must be true after it
 – otherwise the triple is called invalid
Do programmers really do this?

“Warren [Buffet] often talks about these discounted cash flows, but I’ve never seen him do one.”
-- Charlie Munger

• Programmers rarely spell it out in this much detail
 – like Buffet, they usually just do it in their heads

• But there are some key exceptions
 – extremely tricky code
 – loops (next lecture)
 – preconditions for methods
Example 1

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

\[
\{ x \neq 0 \} \quad y = x \times x; \quad \{ y > 0 \}
\]
Example 1

Is the following Hoare triple valid or invalid?

– assume all variables are integers and there is no overflow

`{{ x != 0 }} y = x*x; {{ y > 0 }}`

Valid

• `y` could only be zero if `x` were zero (which it isn’t)
Example 2

Is the following Hoare triple valid or invalid?
 – assume all variables are integers and there is no overflow

\[\{\{ z \neq 1 \}\} \ y = z \times z; \ \{\{ y \neq z \}\}\]
Example 2

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

\[
\{ z \neq 1 \} \quad y = z*z; \quad \{ y \neq z \}
\]

Invalid

- counterexample: \(z = 0 \)
Example 3

Is the following Hoare triple valid or invalid?
- assume all variables are integers and there is no overflow

\[
\{\{ x \geq 0 \}\} \; y = 2*x; \; \{\{ y > x \}\}
\]
Example 3

Is the following Hoare triple valid or invalid?
- assume all variables are integers and there is no overflow

```
{{ x >= 0 }} y = 2*x; {{ y > x }}
```

Invalid
- counterexample: \(x = 0 \)
Example 4

Is the following Hoare triple valid or invalid?

```
{{
  if (x > 7) {
    y = 4;
  } else {
    y = 3;
  }
}{{y < 5}}
```
Example 4

Is the following Hoare triple valid or invalid?

{{ }}
if (x > 7) {
 y = 4;
} else {
 y = 3;
}
{{ y < 5 }}

Valid
• y is either 3 or 4; in either case, it is less than 5
Example 5

Is the following Hoare triple valid or invalid?

\[
\begin{align*}
\{ & \} \\
x & = y \\
z & = x \\
\{ & y = z \}
\end{align*}
\]
Example 5

Is the following Hoare triple valid or invalid?

\[
\{\{ \}
 \quad x = y;
 \quad z = x;
\}
\{\{ y = z \}\}
\]

Valid
Example 6

Is the following Hoare triple valid or invalid?

\[
\{\{ x = 7 \ \text{and} \ y = 5 \}\}
// \text{swap x and y}
tmp = x;
x = tmp;
y = x;
\{\{ x = 5 \ \text{and} \ y = 7 \}\}
\]
Example 6

Is the following Hoare triple valid or invalid?

\[
\{\{ x = 7 \text{ and } y = 5 \}\} \quad // \text{ swap } x \text{ and } y
\]
\[
tmp = x;
\]
\[
x = tmp;
\]
\[
y = x;
\]
\[
\{\{ x = 5 \text{ and } y = 7 \}\}\]

Invalid

• first two lines leave \(x \) unchanged, so we get \(x = y = 7 \)
The general rules

- Some of these require some thought
 - it would be preferable to do this without (much) thought
 - fortunately, there is a “turn the crank” way of doing these

- For each kind of construct, there is a general rule
 - assignment statements
 - two statements in sequence
 - conditionals
 - loops (next lecture)
Assignment Rule

\[
\{\{ P \} \} \ x = e; \ \{\{ Q \} \}
\]

- Let \(Q[x=e] \) be like \(Q \) except replace every \(x \) with \(e \)
 - after "\(x = e; \)”, \(Q \) and \(Q[x=e] \) are equivalent
 - but \(Q[x=e] \) does not involve \(x \) so it holds after "\(x = e; \)" if and only if it holds before
 - so we can consider \(P \) and \(Q[x=e] \) w/out the assignment

- This triple is valid iff: whenever \(P \) holds, \(Q[x=e] \) also holds
 - in logic, we’d say it is valid if \(P \) implies \(Q[x=e] \)
Assignment Rule Example

\[
\{\{ z > 34 \} \} \ y = z + 1; \ \{\{ y > 1 \} \}
\]

- \(Q[y=z+1] \) is \(z + 1 > 1 \)
 - this is equivalent to \(z > 0 \)
 - whenever \(z > 34 \), we also have \(z > 0 \)
 - this is valid
Sequence Rule

\[
{\{ P \}} \ S_1; S_2 \ {\{ Q \}}
\]

• Triple is valid iff: there is an assertion \(R \) such that
 - \({\{ P \}} \ S_1 \ {\{ R \}} \) is valid and
 - \({\{ R \}} \ S_2 \ {\{ Q \}} \) is valid

• For now, we will need to guess \(R \)
 - we will see shortly that we can find an \(R \) without guessing
Sequence Rule Example

\[
\{\{ z \geq 1 \}\} \ y = z+1; \ w = y*y; \ \{\{ w > y \}\}
\]

- Choose \(R \) to be \(y > 1 \)
- Show \(\{\{ z \geq 1 \}\} \ y=z+1; \ \{\{ y > 1 \}\} \)
 - use assignment rule: \(z \geq 1 \) implies \(z+1 > 1 \)?
 - equivalently, \(z \geq 1 \) implies \(z > 0 \)? Valid.
- Show \(\{\{ y > 1 \}\} \ w=y*y; \ \{\{ w > y \}\} \)
 - use assignment rule: \(y > 1 \) implies \(y*y > y \)
 - requires some thought, but valid
- Both of these are triples valid, so the triple at the top is valid
Conditional Rule

\[
\{\{ P \}\} \text{ if (b) } \{S1\} \text{ else } \{S2\} \{\{ Q \}\}
\]

• When S1 executes, we know \(P \) and \(b \)
• When S2 executes, we know \(P \) and not \(b \)

• Triple is valid iff: there are assertions \(Q_1 \) and \(Q_2 \) such that
 – \(\{\{ P \text{ and } b \}\} \) S1 \(\{\{ Q_1 \}\} \) is valid and
 – \(\{\{ P \text{ and not } b \}\} \) S2 \(\{\{ Q_2 \}\} \) is valid and
 – \(Q_1 \) or \(Q_2 \) implies \(Q \)
 • we only know that one holds (which depends on \(b \))
Conditional Rule

```c
{{ }} if (x > 7) {y=x;} else {y=20;} {{ y > 5 }}
```

- Let \(Q_1 \) be \(y > 7 \) (other choices work too)
 - use assignment rule to show \({{ x > 7 }} y=x; {{ y > 7 }} \)
- Let \(Q_2 \) be \(y = 20 \) (other choices work too)
 - use assignment rule to show \({{ x <= 7 }} y=20; {{ y = 20 }} \)
- Check that \(y > 7 \) or \(y = 20 \) implies \(y > 5 \)
Weaker vs Stronger

If “whenever P_1 holds, P_2 also holds”, then:
- P_1 is called **stronger** than P_2
- P_2 is called **weaker** than P_1

- It is more (or at least as) “difficult” to satisfy P_1
 - the program states where P_1 holds are a subset of the states where P_2 holds
- P_1 puts more constraints on program states
- P_1 is a stronger set of requirements

- We do not always have P_1 stronger than P_2 or vice versa!
 - most assertions are incomparable
Examples

• \(x = 17 \) is stronger than \(x > 0 \)

• \(x \) is prime is neither stronger nor weaker than \(x \) is odd
 – these two statements are incomparable

• \(x \) is prime and \(x > 2 \) is stronger than
 \(x \) is odd and \(x > 2 \)

• Many other examples...
Applications to Method Design

• When writing a method, you decide the preconditions
 – e.g., a parameter may be assumed positive
 – e.g., an array may be assumed to be non-empty

• There are advantages and disadvantages to weaker vs stronger
 – stronger preconditions make the code easier to change
 • there are more allowed implementations
 – weaker preconditions allow more uses
 • there are more allowed calls
 – stronger preconditions may make the code easier to write
 – weaker preconditions are necessary for libraries

• We will discuss this more later on…
Applications to Hoare Logic

• Suppose:
 – \(\{ P \} S \{ Q \} \) is valid and
 – some \(P_1 \) is stronger than \(P \) and
 – some \(Q_1 \) is weaker than \(Q \)

• Then these are all valid too:
 – \(\{ P_1 \} S \{ Q \} \)
 • a state where \(P_1 \) holds is one where \(P \) also holds
 – \(\{ P \} S \{ Q_1 \} \)
 • a state where \(Q \) holds is one where \(Q_1 \) also holds
 – \(\{ P_1 \} S \{ Q_1 \} \)
Example Applications to Hoare Logic

\{\{ x \geq 0 \}\} y = x + 1; \{\{ y > 0 \}\}

- We know this is valid by the assignment rule

- Let \(P_1 \) be \(x > 0 \)
 - stronger since \(x \geq 0 \) implies \(x > 0 \)

- Let \(Q_1 \) be \(y \geq 0 \)
 - weaker since \(y \geq 0 \) implies \(y > 0 \)

- Thus, the following is also valid:

\{\{ x > 0 \}\} y = x + 1; \{\{ y \geq 0 \}\}
Weakest preconditions

- Suppose we know Q and S
- There are potentially many P such that ${\{P\}} S {\{Q\}}$ is valid
- Would be ideal if there were a unique weakest precondition P
 - most general assumptions under which S makes Q hold
 - get a valid triple for P_1 if and only if P_1 implies P
- Amazingly, without loops, for any S and Q, this exists!
 - we denote this by $wp(S,Q)$
 - can be found by general rules
- Allows you to reason backward without any guessing
 - just as you do with forward reasoning
Rules for weakest preconditions

• \(\text{wp}(x = e, Q) \) is \(Q[x=e] \)
 – Example: \(\text{wp}(x = 2*y, x > 4) = 2*y > 4 \), i.e., \(y > 2 \)

• \(\text{wp}(S1;S2, Q) \) is \(\text{wp}(S1, \text{wp}(S2, Q)) \)
 – i.e., let \(R \) be \(\text{wp}(S2, Q) \) and overall \(\text{wp} \) is \(\text{wp}(S1, R) \)
 – Example: \(\text{wp}(y = x+1, \text{wp}(z = y+1, z > 2)) = \text{wp}(y = x+1, y+1 > 2) = (x+1)+1 > 2 \) or equivalently \(x > 0 \)

• \(\text{wp}(\text{if } b \ S1 \ \text{else } S2, Q) \) is this logic formula:
 \[
 (b \ \text{and} \ \text{wp}(S1,Q)) \ \text{or} \ (\neg b \ \text{and} \ \text{wp}(S2,Q))
 \]
 – you need \(\text{wp}(S1,Q) \) if \(S1 \) is executed and \(\text{wp}(S2,Q) \) if \(S2 \) is
 – you can often simplify the result considerably
More Examples

- If S is $x = y \times y$ and Q is $x > 4$, then $wp(S, Q)$ is $y \times y > 4$, i.e., $|y| > 2$

- If S is $y = x + 1; \ z = y - 3$; and Q is $z = 10$, then $wp(S, Q) ...$
 \[= wp(y = x + 1; \ z = y - 3, z = 10) \]
 \[= wp(y = x + 1, \ wp(z = y - 3, z = 10)) \]
 \[= wp(y = x + 1, \ y - 3 = 10) \]
 \[= wp(y = x + 1, \ y = 13) \]
 \[= x + 1 = 13 \]
 \[= x = 12 \]
Bigger Example

\[
S \text{ is if } (y < 5) \{ x = y*y; \} \text{ else } \{ x = y+1; \}
\]

\[
\text{wp}(S, x \geq 9) = (y < 5 \text{ and wp}(x = y*y, x \geq 9))
\]
\[
\quad \text{or } (y \geq 5 \text{ and wp}(x = y+1, x \geq 9))
\]
\[
= (y < 5 \text{ and } y*y \geq 9)
\]
\[
\quad \text{or } (y \geq 5 \text{ and } y+1 \geq 9)
\]
\[
= (y \leq -3) \text{ or } (y \geq 3 \text{ and } y < 5)
\]
\[
\quad \text{or } (y \geq 8)
\]
If-statements review

Forward reasoning

\[
\begin{align*}
\{ P \} \\
\text{if } B \\
\quad \{ P \text{ and } B \} \\
\quad S1 \\
\quad \{ Q1 \} \\
\text{else} \\
\quad \{ P \text{ and } \text{not } B \} \\
\quad S2 \\
\quad \{ Q2 \} \\
\{ Q1 \text{ or } Q2 \}
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{ (B \text{ and } \text{wp}(S1, Q)) \text{ or } \\
\quad (\text{not } B \text{ and } \text{wp}(S2, Q)) \} \\
\text{if } B \\
\quad \{ \text{wp}(S1, Q) \} \\
\quad S1 \\
\quad \{ Q \} \\
\text{else} \\
\quad \{ \text{wp}(S2, Q) \} \\
\quad S2 \\
\quad \{ Q \} \\
\{ Q \}
\end{align*}
\]
One caveat

• With forward reasoning, there is a problem with assignment:
 – changing a variable can affect other assumptions

```plaintext
{{ }}
w = x + y;
{{ w = x + y }}
x = 4;
{{ w = x + y and x = 4 }}
y = 3;
{{ w = x + y and x = 4 and y = 3 }}
```

• But clearly we do not know $w = 7$!
• The assertion $w = x + y$ means the original values of x and y
One Fix

- Use different names for the values at different points
 - common to use subscripts to distinguish these
 - on every assignment, rename references to the old values

```c
{{
  w = x + y;
  {{ w = x + y }}
  x = 4;
  {{ w = x_1 + y and x = 4 }}
  y = 3;
  {{ w = x_1 + y_1 and x = 4 and y = 3 }}
```
Useful example: swap

- Consider code for a swapping x and y

```c
{{ }}
    tmp = x;
    {{ tmp = x }}
    x = y;
    {{ tmp = x \_1 and x = y }}
    y = tmp;
    {{ tmp = x \_1 and x = y \_1 and y = tmp }}
```

- Post condition implies $x = y _1$ and $y = x _1$
- I.e., their final values are equal to the original values swapped
Announcements

• Link to notes from last quarter are also on the web

• HW1 posted
 – practice applying these ideas
 – builds up to verifying correctness of short, non-loop code
 – due on Friday by 11pm