
Name:

CSE331 Winter 2014, Final Examination
March 17, 2014

Please do not turn the page until 8:30.
Rules:

• The exam is closed-book, closed-note, etc.

• Please stop promptly at 10:20.

• There are 116 points total, distributed unevenly among 11 questions (many with multiple parts):

Question Max Earned

1 10

2 10

3 10

4 13

5 9

6 14

7 6

8 12

9 15

10 9

11 8

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly
indicate what is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

• If you have questions, ask.

• Relax. You are here to learn.



Name:

1. (10 points)

The following method specification was written correctly by a proud CSE331 graduate. Unfortunately,
it is written in an obscure foreign language.

@requires snurf flarg

@modifies blech murph

@effects roar

@throws woiefio fi gonzo

For parts (a)–(c), give exactly one of these answers, no explanation required :

• stronger if the specification given below is definitely stronger than (or equivalent to) the specifi-
cation above

• weaker if the specification below is definitely weaker than (or equivalent to) the specification above

• neither if the specification given below is definitely incomparable in strength to the specification
above

• unknown if answering the question would require knowing the right foreign language

Don’t miss part (d) below.

(a) @modifies blech murph

@effects roar

@throws woiefio fi gonzo

(b) @requires snurf flarg

@modifies blech murph

@throws woiefio fi gonzo

(c) @requires snurf flarg

@modifies blech murph

@effects roar

(d) Suppose this is the method being specified:

void foo(Bar x) {

assert(x != null);

x.baz(this);

}

Does this additional information change any of your answers above? If so, how? Explain your
answer in 1–2 English sentences.



Name:

2. (10 points) Suppose you try to compile a Java file containing this method definition:

class A extends B {

...

public void foo(boolean x, int y) {

if(x) {

if(y > 7) {

bar(); // this is line 8

} else {

baz();

}

}

}

}

Suppose the type-checker reports only this one error message:

final.java:8: error: unreported exception ClosingTimeException; must

be caught or declared to be thrown

bar();

^

(a) Rewrite the body of foo such that the type-checking error goes away and foo behaves the same
way if an exception is not thrown. (If an exception is thrown, your code can do anything and we
will not grade on style even though in practice what you do would matter.)

(b) Ignoring your answer to part (a) (i.e., assuming you do not do it), instead rewrite the signature
of foo such that the type-checking error goes away and foo behaves the same way.

(c) Describe in English how your answer to part (b) might lead to a different type-checking error for
this definition of method foo, depending on other code in the program.



Name:

3. (10 points) Suppose a programmer writes all the following code:

// helper method used below: is supposed to sort its argument

private void specialSortingRoutine(int[] arr) { ... }

// helper method used below; requires argument is sorted

private int someOtherRoutine(int[] arr) { ... }

// @requires arr is not null

// @returns <something not relevant to the question>

public int provideValuableService(int[] arr) {

assert(arr != null);

specialSortingRoutine(arr);

assert(arr[0] < arr[1]); // quick sanity check (faster than checking whole array)

return someOtherRoutine(arr);

}

(a) In 1–3 English sentences, describe the purpose of the first assertion (assert(arr != null)).
That is, why is it useful to have this assertion in this program?

(b) In 1–3 English sentences, describe the purpose of the second assertion (assert(arr[0] < arr[1])).
That is, why is it useful to have this assertion in this program?

(c) The second assertion is buggy.

i. Describe one situation where it can fail even though the code has no bug.

ii. Describe one situation where it can cause an exception to be thrown that would not otherwise
be thrown.

iii. Rewrite the second assertion to fix the two problems you described above while still being a
very fast (constant-time) check as intended.



Name:

4. (13 points) Consider these classes (where for simplicity constructors are not shown — assume they
take reasonable parameters and are correct):

// Represents immutable drink orders.

// Each drink has a name, a cost, and a size that is either small or large.

class BeverageOrder {

protected String name;

protected int numOunces; // (12 for small, 30 for large)

protected int cost;

// @returns the name of the beverage (e.g., "root beer")

public String drinkName() { return name; }

// @returns true if the order size is small

public boolean isSmall() { return numOunces==12; }

// @returns true if the order size is large

public boolean isLarge() { return !isSmall(); }

// @returns the cost in cents of this drink

public int cost() { return cost; }

}

// Represents immutable drink orders.

// Each drink has a name, a cost, and a size that is one of small, medium, large.

class BeverageOrderWithMedium extends BeverageOrder {

public boolean isMedium() { return numOunces==20; }

}

(a) Is BeverageOrderWithMedium a Java subtype of BeverageOrder? Explain your answer in 1–2
sentences.

(b) Is BeverageOrderWithMedium a true subtype of BeverageOrder? Explain your answer in 1–2
sentences.

(c) The implementation of BeverageOrderWithMedium has a bug. Explain in 1–2 sentences what the
bug is.

(d) Propose a fix for the bug you identified in part (c). Indicate the exact change you would make to
the code.



Name:

More room for your answer to question 4 in case you need it. Don’t panic if you don’t need it.



Name:

5. (9 points) In this problem, assume we already have Java types HighHeeledShoe, Shoe, and FootWear

defined where FootWear is a supertype of Shoe and Shoe is a supertype of HighHeeledShoe. We also
have this Java class:

class Foo extends Object {

Shoe m(Shoe x, Shoe y) { ... }

}

and a Java subclass:

class Bar extends Foo {

...

}

For each method below, if the method were part of class Bar, indicate which one of the following would
be true in Java by writing the italicized word (no explanation required):

• The result is method overriding

• The result is method overloading

• The result is a type-error

• None of the above

(a) FootWear m(Shoe x, Shoe y) { ... }

(b) Shoe m(Shoe q, Shoe z) { ... }

(c) HighHeeledShoe m(Shoe x, Shoe y) { ... }

(d) Shoe m(FootWear x, HighHeeledShoe y) { ... }

(e) Shoe m(FootWear x, FootWear y) { ... }

(f) Shoe m(Shoe x, Shoe y) { ... }

(g) Shoe m(HighHeeledShoe x, HighHeeledShoe y) { ... }

(h) Shoe m(Shoe y) { ... }

(i) Shoe z(Shoe x, Shoe y) { ... }



Name:

6. (14 points) Don’t miss that this problem has a part (b) on the next page.

In this problem, assume these class definitions:

class Animal {

void eat(Food f) {...}

}

class Dog extends Animal {

void bark() {...}

}

class PuppyDog extends Dog {

int cutenessLevel(int x) { return x * 1000; }

}

Now consider this method:

void addAfterEverybodyBarks(List<Dog> dogs, Dog newDog) {

for(Dog d : dogs)

d.bark();

newDog.bark();

dogs.add(newDog);

}

(a) For each call to addAfterEverybodyBarks below, indicate whether or not the code type-checks
— just write “yes” for type-checks or “no” for does not type-check.

List<Animal> la = new ArrayList<Animal>();

List<Dog> ld = new ArrayList<Dog>();

List<PuppyDog> lp = new ArrayList<PuppyDog>();

Animal a = new Animal();

Dog d = new Dog();

PuppyDog p = new PuppyDog();

addAfterEverybodyBarks(la, a);

addAfterEverybodyBarks(ld, a);

addAfterEverybodyBarks(lp, a);

addAfterEverybodyBarks(la, d);

addAfterEverybodyBarks(ld, d);

addAfterEverybodyBarks(lp, d);

addAfterEverybodyBarks(la, p);

addAfterEverybodyBarks(ld, p);

addAfterEverybodyBarks(lp, p);



(b) Show how to change the addAfterEverybodyBarks method by making it more generic so that
(1) all the calls above that type-check still do, (2) at least one more call type-checks and (3) the
method body has the same behavior. Indicate which method call or calls now type-check that did
not before.



Name:

7. (6 points) For each of the Java method signatures below, give an equivalent method signature that
does not use wildcards.

(a) String m1(List<? extends Foo> x);

(b) void m2(List<? extends Foo> x, List<? extends Foo> y);

(c) <T> void m3(List<? extends T> x, List<Object> y, List<T> z);



Name:

8. (12 points)

(a) Describe two different steps you should take after receiving a bug report before looking at the
program code to try to identify the cause. (One sentence each should be plenty.)

(b) Give two different reasons a failure might occur only when assertions are disabled. (One sentence
each should be plenty.)

(c) Describe how binary search can be used effectively in debugging. (A few sentences should be
plenty.)



Name:

9. (15 points) Here is an alphabetical list of some design patterns we studied. Note some patterns are
more specific instances of other patterns.

Adapter, Builder, Composite, Decorator, Factory, Flyweight, Intern, Interpreter, Observer, Procedural,
Prototype, Proxy, Singleton, Visitor, Wrapper

For each statement below, list all design patterns from the list above that meet the description. Your
answer may include one or more than one design pattern. (Zero is not the right answer.)

(a) The pattern involves creating a class where most of the functionality is provided by one other
class.

(b) The pattern should be used only for immutable classes.

(c) The pattern is fundamental to how Java’s GUI libraries are organized.

(d) To require clients to use the pattern, it is necessary to make constructors private.

(e) The pattern is a way to implement the Procedural pattern without using instanceof tests.

(f) One of the purposes of the pattern can be to delay creating an object that may be expensive to
create.



Name:

10. (9 points)

(a) The purpose of a Model-View-Controller design is to keep code for the model, the view, and the
controller separate. The Java GUI library’s use of listeners and callbacks helps keep two of these
three things separate. Which two? (No explanation required.)

(b) Why is it bad for a GUI callback method to take a long time to return? (1–2 sentences should be
plenty.)

(c) What happens if a client of JButton calls addActionListener on the same button multiple times
passing in different objects? (1–2 sentences should be plenty.)

(d) What happens if a client of JButton calls addActionListener on multiple buttons passing in the
same object? (1–2 sentences should be plenty.)

(e) True or false (no explanation required): To register an event listener in Java’s GUI library, you
need to create an anonymous inner class.



Name:

11. (8 points)

(a) For each of the following, indicate whether you would prefer a top-down or a bottom-up imple-
mentation strategy. No explanations required.

i. You are concerned that the design includes too few user-visible features.

ii. You are concerned the system relies fundamentally on new image-processing algorithms that
might be too slow.

iii. Writing test drivers will be unusually difficult.

iv. Writing stubs will be unusually difficult.

(b) Give two different reasons to write code that is never intended to be part of the code delivered in
a final product.

(c) Why is “80% of the code is written” a poor project milestone?


