
University of Washington
CSE 331 Software Design & Implementation

Spring 2012

Final exam
Monday, June 4, 2012

Name:

CSE Net ID (username):

UW Net ID (username):

This exam is closed book, closed notes. You have 110 minutes to complete it. It contains 27 questions and
16 pages (including this one), totaling 220 points. Before you start, please check your copy to make sure
it is complete. Turn in all pages, together, when you are finished. Write your initials on the top of ALL
pages (in case a page gets separated during test-taking or grading).

Please write neatly; we cannot give credit for what we cannot read.
Good luck!

Page Max Score
2 8
3 12
4 20
5 12
6 22
7 26
8 20
9 16
10 12
11 24
12 10
13 10
14 8
15 5
16 15
Total 220

Initials: 1 TRUE/FALSE

1 True/False

(2 points each) Circle the correct answer. T is true, F is false.

1. T / F Top-down testing typically requires the tester to build method stubs.

2. T / F Top-down testing typically requires the tester to build test drivers.

3. T / F For a class that represents an ADT (which excludes some GUI classes, for example), the
Javadoc should always include an Abstraction Function.

4. T / F A user interface that looks aesthetically beautiful may actually be bad in terms of usability.

2

Initials: 2 MULTIPLE CHOICE

2 Multiple choice

(3 points each) Mark the single best choice, by circling the appropriate letter.

5. A design pattern used to enhance the functionality of an object is

(a) Adapter

(b) Decorator

(c) Delegation

(d) Proxy

6. A design pattern often used to restrict access to an object is

(a) Adapter

(b) Decorator

(c) Delegation

(d) Proxy

7. You have a class that accepts and returns values in British Imperial units (feet, miles, etc.), but you
need to use metric units. The design pattern that would best solve your problem is

(a) Adapter

(b) Decorator

(c) Delegation

(d) Proxy

8. Which of the following class relationships best fits the composite pattern?

(a) A Zoo contains a Set<Exhibit>, an Exhibit contains a Set<Animal>, and an Animal con-
tains a number of properties about that individual animal. To get information about a particular
Animal, a client would write something such as:
Zoo.getExhibit("Penguins").getPenguin("Tux").getAge();

(b) Dalmatian is a subclass of Dog, which is a subclass of Mammal, which is a subclass of Animal.
Each subclass overrides some methods while using the inherited version of others, for some
shared behavior and some distinct behavior.

(c) GeometricShape is an interface implemented by Square, Circle, Sphere, and Dodecahedron.
Though they have the same public interface and can all be used anywhere a GeometricShape is
required, they otherwise have no relationship and do not depend on each other.

(d) The class Food is implemented by PeanutButterAndJellySandwich, which contains objects
of type Bread, PeanutButter, and Jelly. Bread contains Flour and Salt, and Jelly contains
Fruit and Sugar. All of these objects are Food objects themselves.

3

Initials: 2 MULTIPLE CHOICE

(5 points each) Mark all of the following that can be true, by circling the appropriate letters.

9. Suppose that you change a specification by removing a precondition and adding/modifying/removing
some other clause, such as a throws clause. The new specification might be:

(a) stronger

(b) weaker

(c) incomparable

(d) same strength (i.e., equivalent)

10. Which of the following is a use case supported by standard version control systems?

(a) Managing several versions or releases of a software program

(b) File bug reports and track their progress

(c) Allowing team members to work in parallel

(d) Identifying when and where a regression occurred

11. Which of the following are facts about a top-down implementation approach?

(a) A top-down process is more time consuming because of the unit tests.

(b) Top-down lets you present a demo of the project to the management faster than using a bottom-
up process.

(c) In a top-down design, if an error is detected it’s always because a lower-level module is not
meeting its specifications (because the higher-level ones are already been tested).

(d) A top-down process makes it possible to detect performance problems faster

(e) A top-down process makes it easier to fix a global conceptual problem

12. Which of the following are appropriate uses of assert statements? Assume that all of this is application
code — it is not a fragment of a unit test.

(a) int oldSize = myList.size();
myList.add(element);
assert myList.size() == oldSize+1;

(b) assert myList.add(element);

(c) /** @requires element != null */
public void add(E element) {
assert element != null;

(d) public void add(E element) {
...
assert repOK(); // like checkRep(), but returns a boolean
return true;

4

Initials: 3 FILL IN THE TABLE

3 Fill in the table

13. (12 points) Suppose you have a program P. Consider the following statements about a given test suite.
Write ⇒ in the following table to indicate which statements imply which other ones? For example, if
statement b implies statement c, you would write ⇒ in the b row and the c column.

(a) The test suite was created using the revealing-subdomain method, and the partitions were chosen
perfectly with respect to P.

(b) The test suite has 100% statement coverage for P.

(c) The test suite has 100% path coverage for P.

(d) The test suite detects all errors in P.

a b c d
a
b
c
d

5

Initials: 3 FILL IN THE TABLE

14. (22 points) Consider the following code.

class A {
void m(A x) { System.out.println("AA"); }
void m(B x) { System.out.println("AB"); }
void m(C x) { System.out.println("AC"); }

}
class B extends A {
void m(A x) { System.out.println("BA"); }
void m(B x) { System.out.println("BB"); }
void m(C x) { System.out.println("BC"); }

}
class C extends B {
void m(A x) { System.out.println("CA"); }
void m(B x) { System.out.println("CB"); }
void m(C x) { System.out.println("CC"); }

}

A a1 = new A();
A a2 = new B();
A a3 = new C();
B b1 = new B();
B b2 = new C();
C c1 = new C();

Fill in each box with the output of the corresponding method invocation. For example, fill in the 4th
row and 2nd column with the output of b1.m(a2).

(Hint: this problem goes pretty fast once you see the pattern.)

a1 a2 a3 b1 b2 c1

a1

a2

a3

b1

b2

c1

6

Initials: 3 FILL IN THE TABLE

15. Consider the following code. Circle “OK” or “error” to indicate which assignments are type-correct
and which are compile-time errors.

(Hint: when type-checking wildcards, the Java type-checker does not take account of information
such as that Object has no supertypes and Double has no subtypes.)

List<Object> lo;
List<? extends Object> leo;
List<? super Object> lso;

List<Number> ln;
List<? extends Number> len;
List<? super Number> lsn;

List<Double> ld;
List<? extends Double> led;
List<? super Double> lsd;

ln = lo; // OK / error
ln = leo; // OK / error
ln = lso; // OK / error
ln = ln; // OK / error
ln = len; // OK / error
ln = lsn; // OK / error
ln = ld; // OK / error
ln = led; // OK / error
ln = lsd; // OK / error

len = lo; // OK / error
len = leo; // OK / error
len = lso; // OK / error
len = ln; // OK / error
len = len; // OK / error
len = lsn; // OK / error
len = ld; // OK / error
len = led; // OK / error
len = lsd; // OK / error

7

Initials: 3 FILL IN THE TABLE

16. You find 4 versions of a function that copies the first n elements from List src to List dest.

void partialcopy(List<Integer> dest, List<Integer> src, int n)

Fortunately, all the implementations have specifications written in CSE 331 style.

Specification A
@requires: n > 0
@modifies: dest
@throws: ArrayOutOfBoundsException if
src.size() < n
@effects: for i=1..n, dest[i]post = src[i]pre

Specification B
@requires: n > 0
@modifies: src, dest
@throws: ArrayOutOfBoundsException if
src.size() < n
@effects: for i=1..n, dest[i]post = src[i]pre

Specification C
@requires: n > 0 and src.size() >= n
@modifies: dest
@throws: nothing
@effects: for i=1..n, dest[i]post = src[i]pre

Specification D
@requires: n > 0
@modifies: dest
@throws: nothing
@effects:
for i=1..min(n, src.size()), dest[i]post = src[i]pre

and for i=src.size()+1..n, dest[i]post = 0

In the following diagram, draw an arrow from X to Y if and only if X is stronger than (implies) Y.

A B

C D

In the interest of reducing code size, which versions of the method can you discard (and replace any
uses of them by uses of remaining, non-discarded versions)? Circle all the redundant versions that
you can discard.

(a) A

(b) B

(c) C

(d) D

8

Initials: 4 SHORT ANSWER

4 Short answer

17. Suppose that your program contains modules A and B, and information flows from A to B. Recall
that it is possible for the program dependencies (as expressed in a Module Dependency Diagram, for
example) to be either A→B or B→A.

Write one word each to distinguish the design expressed in these MDDs: (2 points each)

A→B

B→A

Suppose that you are trying to decide which of the two designs to implement. Give two criteria that
would guide your decision, and how. Give two criteria that are as different as possible from one
another. (1–2 sentences each.) (6 points each)

(a)

(b)

9

Initials: 4 SHORT ANSWER

18. (4 points) State the most important similarity between an interface and an abstract class. (1 sentence)

19. (4 points) State a circumstance in which you would prefer an interface over an abstract class. (1
sentence)

20. (4 points) State a circumstance in which you would prefer an abstract class over an interface. (1
sentence)

10

Initials: 4 SHORT ANSWER

21. (6 points) State a disadvantage of the enumeration design pattern, as it is built into the Java language
(the enum keyword). (Hint: consider the advantages of the alternatives presented in section.) (1
sentence)

22. (12 points) Why are paper-and-pencil sketches of architectures, module dependency diagrams, and
APIs preferred over software prototypes in the early stages of design? Give at least three reasons.
Give reasons that are as different from one another as possible. (Hint: analogize to user interface
design.) (1 sentence each.)

(a)

(b)

(c)

23. (6 points) In 1–2 sentences, explain the circumstances under which a specification should refer to a
field that is defined by the implementation. For brevity, give your answer for either a class specifica-
tion or a method specification, but not both. Indicate which one your answer is about.

Circle one: class / method specification.

Explanation:

11

Initials: 4 SHORT ANSWER

24. (10 points) List three distinct advantages of factory methods over constructors. (No more than 10
words each.)

(a)

(b)

(c)

12

Initials: 5 CODE EXAMPLES

5 Code examples

25. (10 points) Write the output of running the following program’s mainmethod. (Hint: IllegalArgumentException
and NullPointerException are subclasses of RuntimeException.)

public class TryCatchMystery {

public static void main (String[] args) {
try {

method1();
method2();

} catch (IllegalArgumentException e) {
System.out.println("main IllegalArgumentException");

} catch (RuntimeException e) {
System.out.println("main RuntimeException");

}

}

public static void method1() {
System.out.println("entered method1");
try {

method2();
} catch (IllegalArgumentException e) {

System.out.println("method1 IllegalArgumentException");
throw new NullPointerException();

} catch (NullPointerException e) {
System.out.println("method1 NullPointerException");
throw new NullPointerException();

}
System.out.println("exited method1");

}

public static void method2() {
System.out.println("entered method2");
throw new IllegalArgumentException();

}

}

13

Initials: 5 CODE EXAMPLES

26. (8 points) In section, we looked at an example of the visitor pattern in which a PrintVisitor formatted
and printed the text of a Book.

ACME Publishing Company loves your PrintVisitor and has hired you to implement many custom
formatting options. For example, one editor asked for fancy borders, so you wrote the following
subclass:

public class FancyPrintVisitor extends PrintVisitor { ...

Another editor needed a large font size, so you wrote another subclass:

public class LargePrintVisitor extends PrintVisitor { ...

And so on, for semitic (right-to-left) printing and a host of other variants. Now, editors are asking to
be able to combine arbitrarily many options at will, such as making some text both fancy and large.
This is not convenient in your design.

Explain what design technique would you use to solve this problem. Give the name of the technique
and describe what you would have to modify or add to your code to implement the change.

14

Initials: 5 CODE EXAMPLES

27. (20 points) ACME Publishing Company loves your PrintVisitor so much that they’ve asked to be
able to use it to print magazines, too. The BasicPrintVisitor from section should print a magazine
by writing the title of the magazine followed by the title and contents of each article to System.out.
(Don’t worry about whitespace formatting for now.)

Implement the specified methods in the existing BasicPrintVisitor class and the new Magazine and
Article classes below, using the visitor pattern. Note: in class, PrintVisitor appended text to a String
that could later be printed to the console. For simplicity, just call System.out.println directly
instead for the code you write here.

public class Magazine {
private String title;
private List<Article> articles;

...

public String getTitle() {
return title;

}

public List<Article> getArticles() {
return Collections.unmodifiableList(articles);

}

public void accept(PrintVisitor v) {

}
}

(continued on next page)

15

Initials: 5 CODE EXAMPLES

public class Article {
private String title;
private String contents; // the text of the article

...

public String getTitle() {
return title;

}

public String getContents() {
return contents;

}

public void accept(PrintVisitor v) {

}
}

public class BasicPrintVisitor extends PrintVisitor {

...

// This helper method is called by visit(Text t);
private void visitMagazine(Magazine m) {

}

// This helper method is called by visit(Text t);
private void visitArticle(Article a) {

}
}

16

