CSE 331 Winter 2016 Midterm

Name

There are 7 questions worth a total of 100 points. Please budget your time so that you
get to all of the questions. Keep your answers concise.

The exam is closed book, closed notes, closed electronics, closed classmates, open
mind.

Many of the questions have short answers, even if the prompt is a little long. Don’t
worry!

For all questions involving proofs, assertions, invariants, etc., please assume that all
integer quantities are unbounded (e.g., overflow cannot happen) and that integer

division is truncating division as in Java, i.e., 5/3 evaluates to 1.

If you do not remember the syntax of some command or the format of a command’s
output, make the best attempt you can. We will not be grading syntactic details.

Relax and have fun! We’'re all here to learn.

Please wait to turn the page until everyone is told to begin.

Score /100

1 5.
2 6.
3. 7




Question 1. (5 points) [Forward Reasoning] Using forward reasoning, please write an
assertion in each blank space indicating what is known about the program state at that
point, given the precondition and previously executed statements. Please simplify your
final answers. Be as specific as possible, but be sure to retain all relevant information.

(a) {x%$2=0s6&88y=x*x1}

X =x - 3;
{ }
y=y/ x;
{ }

N
I

(y +y) * x;

if (x / 2 < 0)

{ }
else

{ }

z=(y+ty) *x;

{ }
{ }




Question 2. (5 points) [Weakest Precondition] Using backward reasoning, please find
the weakest precondition for each sequence of statements and postconditions below.
Insert appropriate assertions in each blank line. Please simplify your final answers.

@ | }
x = 42;
{ }

if (x / 2 < 0)

X = abs(x) + 6;

else

{ x > 100 }



Question 3. (10 points) [Specification] Below we have a method which takes 3 integer
arrays as input and whose RQensures has been specified. Please complete the
JavaDoc specification with the preconditions etc. to guarantee the @ensures.

/**

@param a
@param b
@param c

@Qrequires

*
*
*
*
*
*
*
*
*
*
*
*
*
* @modifies
*

*

*

*

@ensures c contains exactly the sorted contents of a and b
*/
static void merge (int[] a, int[] b, int[] c) {
int x = 0;
int y = 0;
int i = 0;
while (i < c.length)
if (x >= a.length)
c[i] = bly++];
else if (y >= b.length)
cl[i] = a[x++];
else if (a[x] < blyl)
c[i] = a[x++];
else
c[i] = bly++];
i++;



Question 4. (10 points) [Loop Invariants] Please fill in a loop invariant sufficient to
prove the postcondition below. Note that within an assertion “/\” corresponds to logical
conjunction (and), “\/” corresponds to logical disjunction (or), “-->" corresponds to
logical implication, and “=” corresponds to mathematical equality (not assignment). You
may assume your preconditions on a, b, and ¢ from the previous question hold.

int i = 0;

while (i < c.length)
if (x >= a.length)

{ (forall j,

aljl

(forall j,

else

else

else

i++;

c[i] = bly++];

if (y >= b.length)
c[i] = a[x++];

if (a[x] < b[yl)
c[i] = a[x++];

c[i] = b[y++];

forall e,
e \/ b[j] = e --> exists k, c[k]
forall k,
0 < jJj <k < c.length --> c[j] < c[k]) }

e) /\



Question 5. (15 points) [Termination] Please prove that the itoa method below
terminates.

Your answer should (a) define function M (i) which always produces non-negative
outputs, (b) show that the output of M decreases on every loop iteration (i.e. M(i) at the
end of the loop is less than M (i) at the beginning), (c) show that if M produces zero,
then the loop terminates (i.e. the loop condition is false when M (i) == 0).

/**
* @requires i > 0

*

@Qreturns the String representation of i

* For example: itoa (42) == “42”
*/
public static String itoa(int i) {
String a = “;
while (i > 0) {
String d = Integer.toString(i % 10);

a=d+ a;
i=1i/ 10;
}
return a;

(a) DefineM(i) =

(b) Prove M(i) decreases on each loop iteration.

(c) Prove thatifM(i) == 0, then the loop condition is false.



Question 6. (15 points) [Testing] Consider the following method:

int foo(int i, int j, boolean x, boolean y) {

int res = 0;
if (i < 0) {
res = j - i;
} else if (x || y) {
res = -1;
if() == 1) {
res = 1;
}
} else {
res = j;

}

return res;

(a) How many tests do you need to exhaustively test this method? Assume there are

2% int values and 2 boolean values.

(b) How many tests do you need to achieve full statement coverage?

(c) How many tests do you need to achieve full branch coverage?

(d) In random testing we automatically generate random inputs to a method. What is
one advantage of random testing? What is one disadvantage?



Question 7. (40 points) [ADT] This problem considers an ADT hardened for space.
Outside of our protective atmosphere, charged particles blast through the void and can
flip bits in computers running on spacecraft. To help mitigate these faults in such a
harsh and unforgiving environment, the UW Space League has asked you to design a
new implementation of the List interface that stores duplicates of each list element.

When a DuplList is constructed, the caller provides the “duplication factor”, the number
of each copies of each element that the duplication list should store. When a client
adds an element to a DuplList, the DupList actually stores n copies of the element.
When a client gets the value of list at some index, the DupList checks all the copies of
the element at that index and returns the value that occurs most often.

Please specify, implement, and document your version of DuplList starting on the
following pages.



class DupList<E> implements List<E> ({

// DupList fields

/** TODO: describe your representation invariant (RI)
(Note: for the RI, assume no weird bit flips!)

* % * X X *

/** TODO: document and implement the Duplist constructor

* % F %k X X *

*/
public Duplist(int factor) ({



/** TODO: document and implement add

*/
public boolean add(E elt) ({

/** TODO: document and implement get
(Note: Remember to return the value of the copy
that occurs most often at this index.)

* % F X X X *

*/
public E get(int idx) {

10



/** TODO: implement repair

*

* For each element in the Duplist, repair replaces

* all copies of the element with the value that occurs
* most often among the copies.

*

*/

public void repair() {

/** TODO: implement equals

* (Note: Two Duplists should be considered equal if they
* always agree on the value at all wvalid indices.
*/

public boolean equals (Object o) {

11



/** TODO: Since we overrode equals(), there is another
* method we must carefully override. Do so here. */

(b) Does your implementation of equals() satisfy Java’s requirements? Briefly argue
why below.

12



(c) Suppose we change the specification for the get() method to throw a
TooManyBitFlips exception whenever there is there is no majority among the duplicate
copies. Is this specification strong, weaker, or incomparable to your specification
above? Please explain why.

13



