
Zach Tatlock / Winter 2016

CSE 331
Software Design and Implementation

Lecture 15
Debugging

Read this.

http://blog.regehr.org/archives/199

A Bug’s Life

defect – mistake committed by a human

error – incorrect computation

failure – visible error: program violates its specification

Debugging starts when a failure is observed
Unit testing
Integration testing
In the field

Goal is to go from failure back to defect
– Hard: trying to solve an “inverse problem” (work backward)

Ways to get your code right

Design + Verification
– Ensure there are no bugs in the first place

Testing + Validation
– Uncover problems (even in spec?) and increase confidence

Defensive programming
– Programming with debugging in mind, failing fast

Debugging
– Find out why a program is not functioning as intended

Testing ≠ debugging
– test: reveals existence of problem

• test suite can also increase overall confidence
– debug: pinpoint location + cause of problem

Defense in depth
Levels of defense:

1. Make errors impossible
– Examples: Java prevents type errors, memory corruption

2. Don’t introduce defects
– “get things right the first time”

3. Make errors immediately visible
– Examples: assertions, checkRep
– Reduce distance from error to failure

4. Debug [last level/resort: needed to get from failure to defect]
– Easier to do in modular programs with good specs & test suites
– Use scientific method to gain information

First defense: Impossible by design
In the language

– Java prevents type mismatches, memory overwrite bugs;
guaranteed sizes of numeric types, …

In the protocols/libraries/modules
– TCP/IP guarantees data is not reordered
– BigInteger guarantees there is no overflow

In self-imposed conventions
– Immutable data structure guarantees behavioral equality
– finally block can prevent a resource leak
Caution: You must maintain the discipline

Second defense: Correctness
Get things right the first time

– Think before you code. Don’t code before you think!
– If you're making lots of easy-to-find defects, you're also making

hard-to-find defects – don't rush toward “it compiles”

Especially important when debugging is going to be hard
– Concurrency, real-time environment, no access to customer

environment, etc.

The key techniques are everything we have been learning:
– Clear and complete specs
– Well-designed modularity with no rep exposure
– Testing early and often with clear goals
– …
These techniques lead to simpler software

Strive for simplicity

There are two ways of constructing a software
design: One way is to make it so simple that
there are obviously no deficiencies, and the
other way is to make it so complicated that
there are no obvious deficiencies. The first
method is far more difficult.

Sir Anthony Hoare

Brian Kernighan

Debugging is twice as hard as writing the
code in the first place. Therefore, if you write
the code as cleverly as possible, you are, by
definition, not smart enough to debug it.

Third defense: Immediate visibility

If we can't prevent errors, we can try to localize them

Assertions: catch errors early, before they contaminate and are
perhaps masked by further computation

Unit testing: when you test a module in isolation, any failure is
due to a defect in that unit (or the test driver)

Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

If you can localize problems to a single method or small module,
defects can usually be found simply by studying the program text

Benefits of immediate visibility

The key difficulty of debugging is to find the defect: the code
fragment responsible for an observed problem

– A method may return an erroneous result, but be itself error-
free if representation was corrupted earlier

The earlier a problem is observed, the easier it is to fix
– In terms of code-writing to code-fixing
– And in terms of window of program execution

Don’t program in ways that hide errors
– This lengthens distance between defect and failure

Don't hide errors

// k must be present in a
int i = 0;
while (true) {
if (a[i]==k) break;
i++;

}

This code fragment searches an array a for a value k
– Value is guaranteed to be in the array
– What if that guarantee is broken (by a defect)?

Don't hide errors

// k must be present in a
int i = 0;
while (i < a.length) {
if (a[i]==k) break;
i++;

}

Now the loop always terminates
– But no longer guaranteed that a[i]==k
– If other code relies on this, then problems arise later

Don't hide errors

// k must be present in a
int i = 0;
while (i < a.length) {
if (a[i]==k) break;
i++;

}
assert (i!=a.length) : "key not found";

• Assertions let us document and check invariants
• Abort/debug program as soon as problem is detected

– Turn an error into a failure
• Unfortunately, we may still be a long distance from the defect

– The defect caused k not to be in the array

Inevitable phase: debugging

Defects happen – people are imperfect
– Industry average (?): 10 defects per 1000 lines of code

Defects happen that are not immediately localizable
– Found during integration testing
– Or reported by user

step 1 – Clarify symptom (simplify input), create “minimal” test
step 2 – Find and understand cause
step 3 – Fix
step 4 – Rerun all tests, old and new

The debugging process

step 1 – find small, repeatable test case that produces the failure
– May take effort, but helps identify the defect and gives you a

regression test
– Do not start step 2 until you have a simple repeatable test

step 2 – narrow down location and proximate cause
– Loop: (a) Study the data (b) hypothesize (c) experiment
– Experiments often involve changing the code
– Do not start step 3 until you understand the cause

step 3 – fix the defect
– Is it a simple typo, or a design flaw?
– Does it occur elsewhere?

step 4 – add test case to regression suite
– Is this failure fixed? Are any other new failures introduced?

Observation

Form Hypothesis

Design Experiment

Run Test

Fix Bug!

The Debugging Process

The Debugging Process

Observation

Form Hypothesis

Design Experiment

Run Test

Fix Bug!

t

kn
ow

le
dg

e

Debugging and the scientific method

• Debugging should be systematic
– Carefully decide what to do

• Don’t flail!
– Keep a record of everything that you do
– Don’t get sucked into fruitless avenues

• Use an iterative scientific process:

Example
// returns true iff sub is a substring of full
// (i.e. iff there exists A,B such that full=A+sub+B)
boolean contains(String full, String sub);

User bug report:
It can't find the string "very happy" within:

"Fáilte, you are very welcome! Hi Seán! I am
very very happy to see you all."

Poor responses:
– See accented characters, panic about not knowing about

Unicode, begin unorganized web searches and inserting poorly
understood library calls, …

– Start tracing the execution of this example
Better response: simplify/clarify the symptom…

Reducing absolute input size

Find a simple test case by divide-and-conquer

Pare test down:
Can not find "very happy" within

"Fáilte, you are very welcome! Hi Seán! I am
very very happy to see you all."
"I am very very happy to see you all."
"very very happy"

Can find "very happy" within
"very happy"

Can not find "ab" within "aab"

Reducing relative input size

Can you find two almost identical test cases where one gives the correct
answer and the other does not?

Can not find "very happy" within
"I am very very happy to see you all."

Can find "very happy" within
"I am very happy to see you all.”

General strategy: simplify

In general: find simplest input that will provoke failure
– Usually not the input that revealed existence of the defect

Start with data that revealed the defect
– Keep paring it down (“binary search” can help)
– Often leads directly to an understanding of the cause

When not dealing with simple method calls:
– The “test input” is the set of steps that reliably trigger the

failure
– Same basic idea

Localizing a defect

Take advantage of modularity
– Start with everything, take away pieces until failure goes away
– Start with nothing, add pieces back in until failure appears

Take advantage of modular reasoning
– Trace through program, viewing intermediate results

Binary search speeds up the process
– Error happens somewhere between first and last statement
– Do binary search on that ordered set of statements

Binary search on buggy code
public class MotionDetector {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate

result
at half-way point

Binary search on buggy code
public class MotionDetector {

private boolean first = true;
private Matrix prev = new Matrix();

public Point apply(Matrix current) {
if (first) {

prev = current;
}
Matrix motion = new Matrix();
getDifference(prev,current,motion);
applyThreshold(motion,motion,10);
labelImage(motion,motion);
Hist hist = getHistogram(motion);
int top = hist.getMostFrequent();
applyThreshold(motion,motion,top,top);
Point result = getCentroid(motion);
prev.copy(current);
return result;

}
}

no problem yet

problem exists

Check
intermediate

result
at half-way point

Logging Events
Log (record) events during execution as program runs (at full speed)

Examine logs to help reconstruct the past
– Particularly on failing runs
– And/or compare failing and non-failing runs

The log may be all you know about a customer’s environment
– Needs to tell you enough to reproduce the failure

Performance / advanced issues:
– To reduce overhead, store in main memory, not on disk

(performance vs stable storage) (???)
– Circular logs avoid resource exhaustion and may be good

enough (???)

Detecting Bugs in the Real World

Real Systems
– Large and complex (duh J)
– Collection of modules, written by multiple people
– Complex input
– Many external interactions
– Non-deterministic

Replication can be an issue
– Infrequent failure
– Instrumentation eliminates the failure

Defects cross abstraction barriers
Large time lag from corruption (defect) to detection (failure)

Debugging In Harsh Environments

Failure is non-deterministic,
difficult to reproduce

Can’t print or use debugger

Can’t change timing of program
(or failure depends on timing)

Look inside the machine

Mark Oskin was hacking on a kernel.

No GDB, no printf, no kprintf, …

But, did have beep from mobo!

“Heisenbugs”
In a sequential, deterministic program, failure is repeatable

But the real world is not that nice…
– Continuous input/environment changes
– Timing dependencies
– Concurrency and parallelism

Failure occurs randomly
– Literally depends on results of random-number generation

Bugs hard to reproduce when:
– Use of debugger or assertions makes failure goes away

• Due to timing or assertions having side-effects
– Only happens when under heavy load
– Only happens once in a while

More Tricks for Hard Bugs

Rebuild system from scratch, or restart/reboot
– Find the bug in your build system or persistent data structures

Explain the problem to a friend (or to a rubber duck)

Make sure it is a bug
– Program may be working correctly and you don’t realize it!

And things we already know:

– Minimize input required to exercise bug (exhibit failure)
– Add more checks to the program
– Add more logging

Where is the defect?
The defect is not where you think it is

– Ask yourself where it can not be; explain why
– Self-psychology: look forward to being wrong!

Look for simple easy-to-overlook mistakes first, e.g.,
– Reversed order of arguments:

Collections.copy(src, dest);
– Spelling of identifiers: int hashcode()

@Override can help catch method name typos
– Same object vs. equal: a == b versus a.equals(b)
– Deep vs. shallow copy

Make sure that you have correct source code!
– Check out fresh copy from repository; recompile everything
– Does a syntax error break the build? (it should!)

When the going gets tough

Reconsider assumptions
– e.g., has the OS changed? Is there room on the hard drive?

Is it a leap year? 2 full moons in the month?
– Debug the code, not the comments

• Ensure that comments and specs describe the code
Start documenting your system

– Gives a fresh angle, and highlights area of confusion
Get help

– We all develop blind spots
– Explaining the problem often helps (even to rubber duck)

Walk away
– Trade latency for efficiency – sleep!
– One good reason to start early

Key Concepts
Testing and debugging are different

– Testing reveals failures, debugging pinpoints defect location

Debugging should be a systematic process
– Use the scientific method

Understand the source of defects
– To find similar ones and prevent them in the future

