CSE 331
Software Design & Implementation
Kevin Zatloukal
Summer 2016
Lecture 2 – Reasoning About Code With Logic
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)
Reasoning about code

Idea: determine what facts are true at each line of the program

- We would like to know:
 - at the end, maxIndex is index of the maximum element
 - at the end, negatives before zeros before positives in arr

- Get there by understanding what is true at each line until end
 - then check that those facts that are true at the end include all the things we require
Why do this?

• Essential for building high quality programs
 – allows us to inspect code to check correctness
 – need all three: tools, inspection, & testing
 – inspection is even the most effective of the three

• Essential for building high complexity programs
 – allows us to build modular programs
 • each module has assumptions about how it will be used
 – misunderstandings btw module writers will cause bugs
 – assumptions must be clearly stated (and inspected)
Approaches

• We will discuss two approaches
 – forward reasoning: start at the top and work down
 – backward reasoning: start at the end and work up

• Plan:
 1. intuitive version (by example)
 2. formal definitions & rules
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]

\[
y = x + 2;
\]

\[
z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
x = 2 \times w;
\]

// \(x \geq 2 \times 1 = 2 \)

\[
y = x + 2;
\]

\[
z = y / 2;
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) \(w \geq 1 \)

\[
\begin{align*}
x &= 2 \times w; \\
&\quad \quad \quad \quad // \ x \geq 2 \times 1 = 2 \\
y &= x + 2; \\
&\quad \quad \quad \quad // \ y \geq 2 + 2 = 4 \\
z &= y / 2;
\end{align*}
\]

What can we say at the end about \(z \)?
Example of Forward Reasoning

Suppose we initially know (or assume) $w \geq 1$

\begin{align*}
x &= 2 \times w; \\
 &\quad \text{ // } x \geq 2 \times 1 = 2 \\
y &= x + 2; \\
 &\quad \text{ // } y \geq 2 + 2 = 4 \\
z &= y / 2; \\
 &\quad \text{ // } z \geq 4 / 2 = 2
\end{align*}

What can we say at the end about z? $z \geq 2$
Forward Reasoning

• Forward reasoning:
 – informally, simulates the code (for all inputs at once)
 – formally, determine what follows from initial assumptions

• This is the way most programmers *inspect* their code

• Advantages and disadvantages:
 – intuitive
 – introduces (many) irrelevant facts
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

\[
\begin{align*}
 x &= 2 \times w; \\
 y &= x + 2; \\
 z &= y / 2; \\
 &\quad // \; z \geq 1
\end{align*}
\]
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

\[x = 2 \times w; \]
\[y = x + 2; \]
\[\text{// } y / 2 \geq 1 \text{ or equivalently } y \geq 2 \]
\[z = y / 2; \]
\[\text{// } z \geq 1 \]
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

\[
\begin{align*}
 x &= 2 \times w; \\
 &\quad \text{// } x + 2 \geq 2 \text{ or equivalently } x \geq 0 \\
 y &= x + 2; \\
 &\quad \text{// } y / 2 \geq 1 \text{ or equivalently } y \geq 2 \\
 z &= y / 2; \\
 &\quad \text{// } z \geq 1
\end{align*}
\]
Example of Backward Reasoning

Suppose we want to show that $z \geq 1$ (at the end)
What needs to be true about w?

```
// 2 * w >= 0 or equivalently w >= 0
x = 2 * w;
// x + 2 >= 2 or equivalently x >= 0
y = x + 2;
// y / 2 >= 1 or equivalently y >= 2
z = y / 2;
// z >= 1
```
Backward Reasoning

• Backward reasoning:
 – determines sufficient conditions for a end result
 • e.g., assumptions needed for correctness

• Advantages and disadvantages:
 – less intuitive
 – determines exactly what is necessary to achieve the goal
 – gives you another (powerful) way to reason about code
Our approach

• We will take a **methodical** approach to reasoning about code
 – spell everything out in detail to avoid any misunderstanding
 – (you can move more quickly as you get practice)

• Hoare Logic
 – named after its inventor, Tony Hoare (inventor of quicksort)
 – considers just assignments, if-statements, and while-loops
 • everything else can be built out of these
 – we will consider just integer-valued variables
 • for Java, we will need floats, strings, objects, etc.

• This lecture: assignments & if-statements; Next lecture: loops
Terminology

- The *program state* is the values of all the (relevant) variables.

- An *assertion* is a logical formula referring to the program state (e.g., contents of variables) at a given point.

- An assertion *holds* for a program state if the formula is true when those values are substituted for the variables.

- An assertion before the code is a *precondition*:
 - these represent assumptions about when that code is used.

- An assertion after the code is a *postcondition*:
 - these represent what we want the code to accomplish.
Notation

- Instead of writing assertions as comments, Hoare logic uses {..}
 - since Java code also has {..}, I will use {{...}}
 - e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

- Assertions are math not Java
 - you can use the usual math notation
 - (e.g., = instead of == for equals)
 - purpose is communication with other humans (not computers)
 - we will need and, or, not as well
 - can also write use ∧ (and) ∨ (or) etc.

- The Java language also has assertions (assert statements)
 - throws an exception if the condition does not evaluate true
 - we will discuss these more later in the course
• A Hoare triple is two assertions and one piece of code:
 \[
 \{ P \} \ S \ {\{ Q \}}
 \]
 – \(P \) the precondition
 – \(S \) the code
 – \(Q \) the postcondition

• A Hoare triple \(\{ P \} \ S \ {\{ Q \}} \) is called valid if:
 – in any state where \(P \) holds, executing \(S \) produces a state where \(Q \) holds
 – i.e., if \(P \) is true before \(S \), then \(Q \) must be true after it
 – otherwise the triple is called invalid
Do programmers really do this?

“Warren [Buffet] often talks about these discounted cash flows, but I’ve never seen him do one.”
-- Charlie Munger

- Programmers rarely spell it out in this much detail
 - like Buffet, they usually just do it in their heads

- But there are some key exceptions
 - extremely tricky code
 - loops (next lecture)
 - preconditions for methods
Examples

Is the following Hoare triple valid or invalid?

– assume all variables are integers and there is no overflow

\[
\{\{ x \neq 0 \}\} \ y = x*x; \ {\{ y > 0 \}\}
\]
Examples

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

\[
\{\{ x \neq 0 \}\} \ y = x*x; \ \{\{ y > 0 \}\}
\]

Valid
• \(y \) could only be zero if \(x \) were zero (which it isn’t)
Examples

Is the following Hoare triple valid or invalid?

– assume all variables are integers and there is no overflow

\[
\{\{ z \neq 1 \}\} \ y = z\cdot z; \ \{\{ y \neq z \}\}
\]
Examples

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

\[\{\{ z \neq 1 \}\} \ y = z*z; \ {\{ y \neq z \}\} \]

Invalid

- counterexample: \(z = 0 \)
Examples

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

\[
\{x \geq 0\} \ y = 2 \times x; \ \{y > x\}\]
Examples

Is the following Hoare triple valid or invalid?
 – assume all variables are integers and there is no overflow

$$\{\{ x \geq 0 \}\} \ y = 2x; \ \{\{ y > x \}\}$$

Invalid
• counterexample: $x = 0$
Examples

Is the following Hoare triple valid or invalid?

```plaintext
{{}}
if (x > 7) {
    y = 4;
} else {
    y = 3;
}
{{y < 5}}
```
Examples

Is the following Hoare triple valid or invalid?

```plaintext
if (x > 7) {
y = 4;
} else {
y = 3;
}
{y < 5}
```

Valid
• \(y \) is either 3 or 4; in either case, it is less than 5
Examples

Is the following Hoare triple valid or invalid?

\{\{ \}
 x = y;
 z = x;
 \{\{ y = z \} \} \}

CSE 331 Spring 2016
Examples

Is the following Hoare triple valid or invalid?

\[
\{\{\}\}\ \\
x = y; \\
z = x; \\
\{\{y = z\}\}
\]

Valid
Examples

Is the following Hoare triple valid or invalid?

\[
\{\{x = 7 \text{ and } y = 5\}\}
\]

// swap x and y

tmp = x;
x = tmp;
y = x;

\{\{x = 5 \text{ and } y = 7\}\}\]
Examples

Is the following Hoare triple valid or invalid?

\{
\{ x = 7 \text{ and } y = 5 \}\}
// swap x and y
 tmp = x;
 x = tmp;
 y = x;
\{ x = 5 \text{ and } y = 7 \}\}

Invalid
• first two lines leave x unchanged, so we get \(x = y = 7 \)
The general rules

• Some of these require some thought
 – it would be preferable to do this without (much) thought
 – fortunately, there is a “turn the crank” way of doing these

• For each kind of construct, there is a general rule
 – assignment statements
 – two statements in sequence
 – conditionals
 – loops (next lecture)
Assignment Rule

\[
\{\{ P \}\} \ x = e; \ \{\{ Q \}\}
\]

- Let \(Q[x=e] \) be like \(Q \) except replace every \(x \) with \(e \)
 - after "\(x = e; \)”, \(Q \) and \(Q[x=e] \) are equivalent
 - but \(Q[x=e] \) does not involve \(x \) so it holds after "\(x = e; \)” if
 and only if it holds before
 - so we can consider \(P \) and \(Q[x=e] \) w/out the assignment

- This triple is valid iff: whenever \(P \) holds, \(Q[x=e] \) also holds
 - in logic, we’d say it is valid if \(P \) implies \(Q[x=e] \)
Assignment Rule Example

\[\{\{ z > 34 \} \} \ y = z + 1; \ \{\{ y > 1 \} \} \]

- \(Q[y=z+1] \) is \(z + 1 > 1 \)
 - this is equivalent to \(z > 0 \)
 - whenever \(z > 34 \), we also have \(z > 0 \)
 - this is valid
Sequence Rule

\[
\{\{ P \}\} \ S1;S2 \ \{\{ Q \}\}
\]

- Triple is valid iff: there is an assertion \(R \) such that
 - \(\{\{ P \}\} \ S1 \ \{\{ R \}\} \) is valid and
 - \(\{\{ R \}\} \ S2 \ \{\{ Q \}\} \) is valid

- For now, we will need to guess \(R \)
 - we will see shortly that we can find an \(R \) without guessing
Sequence Rule Example

\[
\{\{ z \geq 1 \} \} \ y = z+1; \ w = y*y; \ {\{ w > y \} }
\]

• Choose \(R \) to be \(y > 1 \)
• Show \(\{\{ z \geq 1 \} \} \ y=z+1; \ {\{ y > 1 \} } \)
 – use assignment rule: \(z \geq 1 \) implies \(z+1 > 1 \)?
 – equivalently, \(z \geq 1 \) implies \(z > 0 \)? Valid.
• Show \(\{\{ y > 1 \} \} \ w=y*y; \ {\{ w > y \} } \)
 – use assignment rule: \(y > 1 \) implies \(y*y > y \)
 – requires some thought, but valid

• Both of these are triples valid, so the triple at the top is valid
Conditional Rule

{{ P }} if (b) {S1} else {S2} {{ Q }}

• When S1 executes, we know P and b
• When S2 executes, we know P and not b

• Triple is valid iff: there are assertions Q_1 and Q_2 such that
 – $\{ P \land b \} S1 \{ Q_1 \}$ is valid and
 – $\{ P \land \neg b \} S2 \{ Q_2 \}$ is valid and
 – $Q_1 \lor Q_2$ implies Q
 • we only know that one holds (which depends on b)
Conditional Rule

```c
{{ }} if (x > 7) {y=x;} else {y=20;} {{y > 5}}
```

- Let Q_1 be $y > 7$ (other choices work too)
 - use assignment rule to show $\{ \{ x > 7 \} \} y=x; \{ \{ y > 7 \} \}$
- Let Q_2 be $y = 20$ (other choices work too)
 - use assignment rule to show $\{ \{ x <= 7 \} \} y=20; \{ \{ y = 20 \} \}$
- Check that $y > 7$ or $y = 20$ implies $y > 5$
Weaker vs Stronger

If “whenever P1 holds, P2 also holds”, then:

- P1 is called **stronger** than P2
- P2 is called **weaker** than P1

- It is more (or at least as) “difficult” to satisfy P1
 - the program states where P1 holds are a subset of the states where P2 holds
- P1 puts more constraints on program states
- P1 is a stronger set of requirements

- We do not always have P1 stronger than P2 or vice versa!
 - most assertions are incomparable
Examples

• $x = 17$ is stronger than $x > 0$

• x is prime is neither stronger nor weaker than x is odd
 – these two statements are incomparable

• x is prime and $x > 2$ is stronger than x is odd and $x > 2$

• Other examples?
Applications to Method Design

• When writing a method, you decide the preconditions
 – e.g., a parameter may be assumed positive
 – e.g., an array may be assumed to be non-empty

• There are advantages and disadvantages to weaker vs stronger
 – stronger preconditions make the code easier to change
 • there are more allowed implementations
 – weaker preconditions allow more uses
 • there are more allowed calls
 – stronger preconditions may make the code easier to write
 – weaker preconditions are necessary for libraries

• We will discuss this more later on…
Applications to Hoare Logic

• Suppose:
 – \{P\} S \{Q\} is valid and
 – P is weaker than some P_1 and
 – Q is stronger than some Q_1

• Then these are all valid too:
 – \{P_1\} S \{Q\}
 • a state where P_1 holds is one where P also holds
 – \{P\} S \{Q_1\}
 • a state where Q holds is one where Q_1 also holds
 – \{P_1\} S \{Q_1\}
Example Applications to Hoare Logic

\{\{ x \geq 0 \}\} y = x + 1; \{\{ y > 0 \}\}

- We know this is valid by the assignment rule

- Let \(P_1 \) be \(x > 0 \)
 - stronger since \(x \geq 0 \) implies \(x > 0 \)
- Let \(Q_1 \) be \(y \geq 0 \)
 - weaker since \(y \geq 0 \) implies \(y > 0 \)

- Thus, the following is also valid:

 \{\{ x > 0 \}\} y = x + 1; \{\{ y \geq 0 \}\}
Weakest preconditions

• Suppose we know Q and S
• There are potentially many P such that $\{P\} S \{Q\}$ is valid

• Would be ideal if there were a unique weakest precondition P
 – most general assumptions under which S makes Q hold
 – get a valid triple for $P1$ if and only if $P1$ implies P

• Amazingly, without loops, for any S and Q, this exists!
 – we denote this by $wp(S,Q)$
 – can be found by general rules

• Allows you to reason backward without any guessing
 – just as you do with forward reasoning
Rules for weakest preconditions

• \(\text{wp}(x = e, Q) \) is \(Q[x=e] \)
 - Example: \(\text{wp}(x = y*y, x > 4) = y*y > 4 \), i.e., \(|y| > 2 \)

• \(\text{wp}(S_1 ; S_2, Q) \) is \(\text{wp}(S_1, \text{wp}(S_2, Q)) \)
 - i.e., let \(R \) be \(\text{wp}(S_2, Q) \) and overall \(\text{wp} \) is \(\text{wp}(S_1, R) \)
 - Example: \(\text{wp}(y = x+1; z = y+1, z > 2) = \text{wp}(y = x+1, y+1 > 2) = (x+1)+1 > 2 \) or equivalently \(x > 0 \)

• \(\text{wp}(\text{if } b \ S_1 \text{ else } S_2, Q) \) is this logic formula:
 \[(b \text{ and } \text{wp}(S_1,Q)) \text{ or } (!b \text{ and } \text{wp}(S_2,Q))\]
 - you need \(\text{wp}(S_1,Q) \) if \(S_1 \) is executed and \(\text{wp}(S_2,Q) \) if \(S_2 \) is
 - you can often simplify the result considerably
More Examples

• If S is $x = y \cdot y$ and Q is $x > 4$,
 then $wp(S,Q)$ is $y \cdot y > 4$, i.e., $|y| > 2$

• If S is $y = x + 1; \ z = y - 3$; and Q is $z = 10$,
 then $wp(S,Q)$...
 = $wp(y = x + 1; \ z = y - 3, z = 10)$
 = $wp(y = x + 1, wp(z = y - 3, z = 10))$
 = $wp(y = x + 1, y - 3 = 10)$
 = $wp(y = x + 1, y = 13)$
 = $x + 1 = 13$
 = $x = 12$
Bigger Example

S is if (x < 5) { x = x*x; } else { x = x+1; }

wp(S, x >= 9)

= (x < 5 and wp(x = x*x, x >= 9))
 or (x >= 5 and wp(x = x+1, x >= 9))

= (x < 5 and x*x >= 9)
 or (x >= 5 and x+1 >= 9)

= (x <= -3) or (x >= 3 and x < 5)
 or (x >= 8)
If-statements review

Forward reasoning

\[
\begin{align*}
\{ \{ P \} \} \\
\text{if } B \\
\quad \{ \{ P \text{ and } B \} \} \\
\quad S1 \\
\quad \{ \{ Q1 \} \} \\
\text{else} \\
\quad \{ \{ P \text{ and not } B \} \} \\
\quad S2 \\
\quad \{ \{ Q2 \} \} \\
\quad \{ \{ Q1 \text{ or } Q2 \} \}
\end{align*}
\]

Backward reasoning

\[
\begin{align*}
\{ \{ (B \text{ and } wp(S1, Q)) \text{ or } (\text{not } B \text{ and } wp(S2, Q)) \} \} \\
\text{if } B \\
\quad \{ \{ \text{wp}(S1, Q) \} \} \\
\quad S1 \\
\quad \{ \{ Q \} \} \\
\text{else} \\
\quad \{ \{ \text{wp}(S2, Q) \} \} \\
\quad S2 \\
\quad \{ \{ Q \} \} \\
\quad \{ \{ Q \} \}
\end{align*}
\]
One caveat

• With forward reasoning, there is a problem with assignment:
 – changing a variable can affect other assumptions

```plaintext
{{{}}
  w = x + y;
  {{w = x + y;}}
  x = 4;
  {{w = x + y and x = 4}}
  y = 3;
  {{w = x + y and x = 4 and y = 3}}

• But clearly we do not know w = 7!
• The assertion w = x + y means the original values of x and y
```
One Fix

- Use different names for the values at different points
 - common to use subscripts to distinguish these
 - on every assignment, rename references to the old values

```c
{{
  w = x + y;
  {{w = x + y;}}
  x = 4;
  {{w = x₁ + y and x = 4}}
  y = 3;
  {{w = x₁ + y₁ and x = 4 and y = 3}}
}}
```
Useful example: swap

• Consider code for a swapping \(x \) and \(y \)

\[
\begin{align*}
&\text{tmp} = x; \\
&\{\{ \text{tmp} = x \}\} \\
&x = y; \\
&\{\{ \text{tmp} = x_1 \text{ and } x = y \}\} \\
&y = \text{tmp}; \\
&\{\{ \text{tmp} = x_1 \text{ and } x = y_1 \text{ and } y = \text{tmp} \}\}
\end{align*}
\]

• Post condition implies \(x = y_1 \) and \(y = x_1 \)
• I.e., their final values are equal to the original values swapped
Announcements

- Link to notes from last quarter are also on the web

- HW1 will be out very shortly (within the hour)
 - practice applying these ideas
 - builds up to verifying correctness of short, non-loop code
 - due on Friday (no penalty for Saturday)