CSE 331
Software Design & Implementation

Hal Perkins
Spring 2016
Exceptions and Assertions
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)
Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how
 – For things you believe will/should never happen

• Exceptions: what, how in Java
 – How to throw, catch, and declare exceptions
 – Subtyping of exceptions
 – Checked vs. unchecked exceptions

• Exceptions: why in general
 – For things you believe are bad and should rarely happen
 – And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
Failure causes

Partial failure is inevitable
- Goal: prevent complete failure
 - Structure your code to be reliable and understandable

Some failure causes:

1. Misuse of your code
 - Precondition violation

2. Errors in your code
 - Bugs, representation exposure, …

3. Unpredictable external problems
 - Out of memory, missing file, …
What to do when something goes wrong

Fail early, fail friendly

Goal 1: *Give information about the problem*
- To the programmer – a good error message is key!
- To the client code: via exception or return-value or …

Goal 2: *Prevent harm*
Abort: inform a human
- Perform cleanup actions, log the error, etc.
Re-try:
- Problem might be transient
Skip a subcomputation:
- Permit rest of program to continue
Fix the problem?
- *Usually* infeasible to repair from an unexpected state
Avoiding errors

A precondition prohibits misuse of your code
 – Adding a precondition weakens the spec

This ducks the problem of errors-will-happen
 – Mistakes in your own code
 – Misuse of your code by others

Removing a precondition requires specifying more behavior
 – Often a good thing, but there are tradeoffs
 – Strengthens the spec
 – Example: specify that an exception is thrown
Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how
 – For things you believe will/should never happen

• Exceptions: what, how
 – How to throw, catch, and declare exceptions in Java
 – Subtyping of exceptions
 – Checked vs. unchecked exceptions

• Exceptions: why in general
 – For things you believe are bad and should rarely happen
 – And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
Defensive programming

Check:
- Precondition
- Postcondition
- Representation invariant
- Other properties that you know to be true

Check *statically* via reasoning and tools

Check *dynamically* via assertions

```java
assert index >= 0;
assert items != null : "null item list argument"
assert size % 2 == 0 : "Bad size for " + toString();
```

- Write assertions as you write code
- Include descriptive messages
Enabling assertions

In Java, assertions can be enabled or disabled at runtime without recompiling

Command line:

- `java -ea` runs code with assertions enabled
- `java` runs code with assertions disabled (default)

Eclipse:

- Select Run>Run Configurations… then add `-ea` to VM arguments under (x)=arguments tab

(These tool details were covered in section already)
When *not* to use assertions

Don’t clutter the code with useless, distracting repetition

```java
x = y + 1;
assert x == y + 1;
```

Don’t perform side effects

```java
assert list.remove(x); // won’t happen if disabled

// Better:
boolean found = list.remove(x);
assert found;
```

Turn them off in rare circumstances (production code(?)

- Most assertions better left enabled
assert and checkRep()

CSE 331’s checkRep() is another dynamic check

Strategy: use assert in checkRep() to test and fail with meaningful traceback/message if trouble found
 – Be sure to enable asserts when you do this!

Asserts should be enabled always for CSE 331 projects
 – We will enable them for grading
Expensive `checkRep()` tests

Detailed checks can be too slow in production

But complex tests can be very helpful, particularly during testing/debugging (let the computer find problems for you!)

No perfect answers; suggested strategy for `checkRep`:

 – Create a static, global “debug” or “debugLevel” variable
 – Run expensive tests when this is enabled
 – Turn it off in graded/production code if tests are too expensive

Often helpful: put expensive/complex tests in separate methods and call as needed
Square root

// requires: x ≥ 0
// returns: approximation to square root of x
public double sqrt(double x) {
 ...
}

CSE331 Spring 2016
Square root with assertion

// requires: x ≥ 0
// returns: approximation to square root of x
public double sqrt(double x) {
 assert (x >= 0.0);
 double result;
 ... compute result ...
 assert (Math.abs(result*result – x) < .0001);
 return result;
}

– These two assertions serve very different purposes

(Note: the Java library Math.sqrt method returns NaN for x<0. We use different specifications in this lecture as examples.)
Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how
 – For things you believe will/should never happen

• Exceptions: what, how
 – How to throw, catch, and declare exceptions in Java
 – Subtyping of exceptions
 – Checked vs. unchecked exceptions

• Exceptions: why in general
 – For things you believe are bad and should rarely happen
 – And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
Square root, specified for all inputs

// throws: IllegalArgumentException if x < 0
// returns: approximation to square root of x
public double sqrt(double x)
 throws IllegalArgumentException
{
 if (x < 0)
 throw new IllegalArgumentException();
 ...
}

• **throws** is part of a method signature: “it might happen”
 – Comma-separated list
• **throw** is a statement that actually causes exception-throw
 – Immediate control transfer [like return but different]
Using try-catch to handle exceptions

```java
public double sqrt(double x)
    throws IllegalArgumentException
{
    ...
}
```

Client code:
```java
try {
    y = sqrt(...);
} catch (IllegalArgumentException e) {
    e.printStackTrace(); //and/or take other actions
}
```

Handled by nearest **dynamically** enclosing `try/catch`
- Top-level default handler: stack trace, program terminates
Throwing and catching

- Executing program has a stack of currently executing methods
 - Dynamic: reflects runtime order of method calls
 - No relation to static nesting of classes, packages, etc.
- When an exception is thrown, control transfers to nearest method with a matching catch block
 - If none found, top-level handler prints stack trace and terminates
- Exceptions allow non-local error handling
 - A method many levels up the stack can handle a deep error
Catching with inheritance

```java
try {
  code...
} catch (FileNotFoundException fnfe) {
  code to handle a file not found exception
} catch (IOException ioe) {
  code to handle any other I/O exception
} catch (Exception e) {
  code to handle any other exception
}
```

- A `SocketException` would match the second block
- An `ArithmeticException` would match the third block
- Subsequent catch blocks need not be supertypes like this
Exception Hierarchy
Java’s checked/unchecked distinction

Checked exceptions *(style: for special cases)*

– Callee: *Must* declare in signature (else type error)
– Client: Must either catch or declare (else type error)
 • Even if *you* can prove it will never happen at run time,
 the type system does not “believe you”
– There is guaranteed to be a dynamically enclosing catch

Unchecked exceptions *(style: for never-expected)*

– Library: No need to declare
– Client: No *need* to catch
– Subclasses of *RuntimeException* and *Error*
Checked vs. unchecked

- No perfect answer to “should possible exceptions thrown” be part of a method signature
 - So Java provided both

- Advantages to checked exceptions:
 - Static checking of callee ensures no other checked exceptions get thrown
 - Static checking of caller ensures caller does not forget to check

- Disadvantages:
 - Impedes implementations and overrides
 - Often in your way when prototyping
 - Have to catch or declare even in clients where the exception is not possible
The **finally** block

finally block is always executed

- Whether an exception is thrown or not

```java
try {
    code...
} catch (Type name) {
    code... to handle the exception
} finally {
    code... to run after the try or catch finishes
}
```
What **finally** is for

finally is used for common “must-always-run” or “clean-up” code
- Avoids duplicated code in catch branch[es] and after
- Avoids having to catch all exceptions

```java
try {
    // ... write to out; might throw exception
} catch (IOException e) {
    System.out.println("Caught IOException: " + e.getMessage());
} finally {
    out.close();
}
```
Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how
 – For things you believe will/should never happen

• Exceptions: what, how \textit{in Java}
 – How to throw, catch, and declare exceptions
 – Subtyping of exceptions
 – Checked vs. unchecked exceptions

• \textbf{Exceptions: why \textit{in general}}
 – For things you believe are bad and should rarely happen
 – And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
Propagating an exception

// returns: x such that ax^2 + bx + c = 0
// throws: IllegalArgumentException if no real soln exists
double solveQuad(double a, double b, double c)
 throws IllegalArgumentException
{
 // No need to catch exception thrown by sqrt
 return (-b + Math.sqrt(b*b - 4*a*c)) / (2*a);
}

Aside: How can clients know if a set of arguments to solveQuad is illegal?
Why catch exceptions locally?

Failure to catch exceptions usually violates modularity
 – Call chain: A → IntegerSet.insert → IntegerList.insert
 – IntegerList.insert throws some exception
 • Implementer of IntegerSet.insert knows how list is being used
 • Implementer of A may not even know that IntegerList exists

Method on the stack may think that it is handling an exception raised by a different call

Better alternative: catch it and throw again
 – “chaining” or “translation”
 – Do this even if the exception is better handled up a level
 – Makes it clear to reader of code that it was not an omission
Exception translation

// returns: x such that ax^2 + bx + c = 0
// throws: NotRealException if no real solution exists
double solveQuad(double a, double b, double c)
 throws NotRealException {
 try {
 return (-b + sqrt(b*b - 4*a*c)) / (2*a);
 } catch (IllegalArgumentException e) {
 throw new NotRealException(); // “chaining”
 }
}

class NotRealException extends Exception {
 NotRealException() { super(); }
 NotRealException(String message) { super(message); }
 NotRealException(Throwables cause) { super(cause); }
 NotRealException(String msg, Throwable c) { super(msg, c); }
}
Exceptions as non-local control flow

```java
void compile() {
    try {
        parse();
        typecheck();
        optimize();
        generate();
    } catch (RuntimeException e) {
        Logger.log("Failed: " + e.getMessage());
    }
}
```

- Not common – usually bad style, particularly at small scale
- Java/C++, etc. exceptions are expensive if thrown/caught
- Reserve exceptions for exceptional conditions
Two distinct uses of exceptions

• Failures
 – Unexpected
 – Should be rare with well-written client and library
 – Can be the client’s fault or the library’s
 – Usually unrecoverable

• Special results
 – Expected but not the common case
 – Unpredictable or unpreventable by client
Handling exceptions

• Failures
 – Usually can’t recover
 – If condition not checked, exception propagates up the stack
 – The top-level handler prints the stack trace
 – Unchecked exceptions the better choice (else many methods have to declare they could throw it)

• Special results
 – Take special action and continue computing
 – Should always check for this condition
 – Should handle locally by code that knows how to continue
 – Checked exceptions the better choice (encourages local handling)
Don’t ignore exceptions

Effective Java Tip #65: Don't ignore exceptions

Empty catch block is (common) poor style – often done to get code to compile despite checked exceptions

– Worse reason: to silently hide an error

try {
 readFile(filename);
} catch (IOException e) {} // silent failure

At a minimum, print out the exception so you know it happened

– And exit if that’s appropriate for the application

} catch (IOException e) {
 e.printStackTrace();
 System.exit(1);
}
Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how
 – For things you believe will/should never happen

• Exceptions: what, how in Java
 – How to throw, catch, and declare exceptions
 – Subtyping of exceptions
 – Checked vs. unchecked exceptions

• Exceptions: why in general
 – For things you believe are bad and should rarely happen
 – And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
Informing the client of a problem

Special value:
- `null` for `Map.get`
- `-1` for `indexOf`
- `NaN` for `sqrt` of negative number

Advantages:
- For a normal-ish, common case, it “is” the result
- Less verbose clients than try/catch machinery

Disadvantages:
- Error-prone: Callers forget to check, forget spec, etc.
- Need “extra” result: Doesn’t work if every result could be real
 - Example: if a map could store `null` keys
- Has to be propagated manually one call at a time

General Java style advice: Exceptions for exceptional conditions
- Up for debate if `indexOf` not-present-value is exceptional
Special values in C/C++/others

• For errors and exceptional conditions in Java, use exceptions!

• But C doesn’t have exceptions and some C++ projects avoid them

• Over decades, a common idiom has emerged
 – Error-prone but you can get used to it 😐
 – Affects how you read code
 – Put “results” in “out-parameters”
 – Result is a boolean (int in C) to indicate success or failure

 type result;
 if(!computeSomething(&result)) { ... return 1; }
 // no "exception", use result

• Bad, but less bad than error-code-in-global-variable
Outline

• General concepts about dealing with errors and failures

• Assertions: what, why, how
 – For things you believe will/should never happen

• Exceptions: what, how in Java
 – How to throw, catch, and declare exceptions
 – Subtyping of exceptions
 – Checked vs. unchecked exceptions

• Exceptions: why in general
 – For things you believe are bad and should rarely happen
 – And many other style issues

• Alternative with trade-offs: Returning special values

• Summary and review
Exceptions: review

Use an exception when
- Used in a broad or unpredictable context
- Checking the condition is feasible

Use a precondition when
- Checking would be prohibitive
 - E.g., requiring that a list be sorted
- Used in a narrow context in which calls can be checked

Use a special value when
- It is a reasonable common-ish situation
- Clients are likely (?) to remember to check for it

Use an assertion for internal consistency checks that should not fail
Exceptions: review, continued

Use *checked* exceptions most of the time
 – Static checking is helpful

But maybe avoid checked exceptions if possible for many callers to *guarantee* exception cannot occur

Handle exceptions sooner rather than later

Not all exceptions are errors
 – Example: File not found

Good reference: Effective Java, Chapter 9
 – A whole chapter? Exception-handling design matters!