Announcements

• Discussion board: be sure to post a reply to the welcome message

• Next few lectures: two presentations on the web:
 – Powerpoint slides
 – Lecture notes

• They are complementary and you should understand both of them

• HW1 out now. Programming logic with no loops. Due in a week.
Reasoning about code

Determine what facts are true as a program executes
 – Under what assumptions

Examples:
 – If x starts positive, then y is 0 when the loop finishes
 – Contents of the array that arr refers to are sorted
 – Except at one code point, $x + y == z$
 – For all instances of Node n,
 $n.next == null ∨ n.next.prev == n$
 – ...

Why do this?

- Essential complement to testing, which we will also study
 - Testing: Actual results for some actual inputs
 - Logical reasoning: Reason about whole classes of inputs/ states at once (“If \(x > 0 \), …”)
 - Prove a program correct (or find bugs trying)
 - Understand why code is correct

- Stating assumptions is the essence of specification
 - “Callers must not pass \texttt{null} as an argument”
 - “Callee will always return an unaliased object”
 - …
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

• Programmers rarely “use Hoare logic” in this much detail
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But can be very useful to develop and reason about loops and data with subtle invariants
 • Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World® (coming lectures)
Example

Forward reasoning:

- Suppose we initially know (or assume) $w > 0$

  ```
  // w > 0
  x = 17;
  // w > 0 ∧ x == 17
  y = 42;
  // w > 0 ∧ x == 17 ∧ y == 42
  z = w + x + y;
  // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
  ...
  ```

- Then we know various things after, including $z > 59$
Example

Backward reasoning:

– Suppose we want \(z \) to be negative at the end

  ```
  // w + 17 + 42 < 0
  x = 17;
  // w + x + 42 < 0
  y = 42;
  // w + x + y < 0
  z = w + x + y;
  // z < 0
  ```

– Then we know initially we need to know/assume \(w < -59 \)

 • Necessary and sufficient
Forward vs. Backward, Part 1

• Forward reasoning:
 – Determine what follows from initial assumptions
 – Most useful for *maintaining an invariant*

• Backward reasoning
 – Determine sufficient conditions for a certain result
 • If result desired, the assumptions suffice for correctness
 • If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

• Forward reasoning:
 – Simulates the code (for many “inputs” “at once”)
 – Often more intuitive
 – But introduces [many] facts irrelevant to a goal

• Backward reasoning
 – Often more useful: Understand what each part of the code contributes toward the goal
 – “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
// initial assumptions
if(...) {
 ...
 // also know test evaluated to true
} else {
 ...
 // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression

2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

```plaintext
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
    // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
    z = x;
    // ... ∧ z > 0
} else {
    // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
    z = x + 1;
    // ... ∧ z == 1
}
// ( ... ∧ z > 0) ∨ (... ∧ z == 1) (so z > 0)
```
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

• The “assumption” before some code is the **precondition**
• The “what holds after (given assumption)” is the **postcondition**

• Instead of writing pre/postconditions after //, write them in {...}
 – This is not Java
 – How Hoare logic has been written “on paper” for 40ish years

    ```
    { w < -59 }
    x = 17;
    { w + x < -42 }
    ```
 – In pre/postconditions, = is equality, not assignment
 • Math’s “=”, which for numbers is Java’s ==

      ```
      { w > 0 ∧ x = 17 }
      y = 42;
      { w > 0 ∧ x = 17 ∧ y = 42 }
      ```
What an assertion means

• An *assertion* (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

• A *program state* is something that “given” a variable can “tell you” its contents
 – Or any expression that has no *side-effects*

• An assertion *holds* for a program state, if evaluating using the program state produces *true*
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the *set* of (exactly the) states for which it holds
A Hoare Triple

• A Hoare triple is two assertions and one piece of code:

\[\{ P \} \ S \{ Q \} \]

– \(P \) the precondition
– \(S \) the code (statement)
– \(Q \) the postcondition

• A Hoare triple \(\{ P \} \ S \{ Q \} \) is (by definition) valid if:
 – For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 – Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 – Else the Hoare triple is invalid
Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

• \{x \neq 0\} y = x*x; \{y > 0\}
• \{z \neq 1\} y = z*z; \{y \neq z\}
• \{x \geq 0\} y = 2*x; \{y > x\}
• \{true\} (if(x > 7) \{y=4;\} else \{y=3;\}) \{y < 5\}
• \{true\} (x = y; z = x;) \{y=z\}
• \{x=7 \land y=5\}
 (tmp=x; x=tmp; y=x;)
 \{y=7 \land x=5\}
Examples

Valid or invalid?
 - (Assume all variables are integers without overflow)

• \{x \neq 0\} \ y = x*x; \ {y > 0} \ \text{valid}
• \{z \neq 1\} \ y = z*z; \ {y \neq z} \ \text{invalid}
• \{x \geq 0\} \ y = 2*x; \ {y > x} \ \text{invalid}
• \{\text{true}\} \ (\text{if}(x > 7) \ {y=4;} \ \text{else} \ {y=3;}) \ {y < 5} \ \text{valid}
• \{\text{true}\} \ (x = y; \ z = x;) \ {y=z} \ \text{valid}
• \{x=7 \ \land \ y=5\} \ \text{invalid}
 \ (\text{tmp}=x; \ x=\text{tmp}; \ y=x;)
 \ {y=7 \ \land \ x=5\}
Aside: assert in Java

• An assertion in Java is a statement with a Java expression, e.g.,
 \[\text{assert } x > 0 \land y < x;\]
• Similar to our assertions
 – Evaluate using a program state to get true or false
 – Uses Java syntax

• In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 – Unless assertion-checking is disabled
 – Later course topic

• This week: we are reasoning about the code, not running it on some input
The general rules

- So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

- Now: For each kind of construct there is a general rule
 - A rule for assignment statements
 - A rule for two statements in sequence
 - A rule for conditionals
 - [next lecture:] A rule for loops
 - ...
Basic rule: Assignment

\[\{P\} \ x = e; \ \{Q\} \]

- Let \(Q' \) be like \(Q \) except replace every \(x \) with \(e \)
- Triple is valid if:
 For all program states, if \(P \) holds, then \(Q' \) holds
 - That is, \(P \) implies \(Q' \), written \(P \Rightarrow Q' \)

- Example: \(\{z > 34\} \ y = z + 1; \ \{y > 1\} \)
 - \(Q' \) is \(\{z+1 > 1\} \)
Combining rule: Sequence

\{P\} S_1; S_2 \{Q\}

- Triple is valid if and only if there is an assertion \(R \) such that
 - \(\{P\}S_1\{R\} \) is valid, and
 - \(\{R\}S_2\{Q\} \) is valid

- Example: \(\{z \geq 1\} y = z + 1; w = y \times y; \{w > y\} \) (integers)
 - Let \(R \) be \(\{y > 1\} \)
 - Show \(\{z \geq 1\} y = z + 1; \{y > 1\} \)
 - Use rule for assignments: \(z \geq 1 \) implies \(z + 1 > 1 \)
 - Show \(\{y > 1\} w = y \times y; \{w > y\} \)
 - Use rule for assignments: \(y > 1 \) implies \(y \times y > y \)
Combining rule: Conditional

\{P\} \text{if}(b) \ S1 \text{ else } S2 \ \{Q\}

- Triple is valid if and only if there are assertions Q_1, Q_2 such that
 - $\{P \land b\} S1\{Q_1\}$ is valid, and
 - $\{P \land \neg b\} S2\{Q_2\}$ is valid, and
 - $Q_1 \lor Q_2$ implies Q

- Example: $\{true\}$ $\text{(if}(x > 7) \ y=x; \text{ else } y=20;\}$ $\{y > 5\}$
 - Let Q_1 be $\{y > 7\}$ (other choices work too)
 - Let Q_2 be $\{y = 20\}$ (other choices work too)
 - Use assignment rule to show $\{true \land x > 7\} y=x; \{y>7\}$
 - Use assignment rule to show $\{true \land x \leq 7\} y=20; \{y=20\}$
 - Indicate $y>7 \lor y=20$ implies $y>5$
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Weaker vs. Stronger

If P1 implies P2 (written P1 => P2), then:

– P1 is stronger than P2
– P2 is weaker than P1

• Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1
 – The program states where P1 holds are a subset of the program states where P2 holds
• So P1 puts more constraints on program states
• So it’s a stronger set of obligations/requirements
Examples

• \(x = 17 \) is stronger than \(x > 0 \)

• \(x \) is prime is neither stronger nor weaker than \(x \) is odd

• \(x \) is prime and \(x > 2 \) is stronger than
 \(x \) is odd and \(x > 2 \)

• ...

Why this matters to us

• Suppose:
 – \(\{P\} S \{Q\} \), and
 – \(P \) is weaker than some \(P_1 \), and
 – \(Q \) is stronger than some \(Q_1 \)

• Then: \(\{P_1\} S \{Q\} \) and \(\{P\} S \{Q_1\} \) and \(\{P_1\} S \{Q_1\} \)

• Example:
 – \(P \) is \(x \geq 0 \)
 – \(P_1 \) is \(x > 0 \)
 – \(S \) is \(y = x+1 \)
 – \(Q \) is \(y > 0 \)
 – \(Q_1 \) is \(y \geq 0 \)
So...

• For backward reasoning, if we want $\{P\} S \{Q\}$, we could instead:
 - Show $\{P1\} S \{Q\}$, and
 - Show $P \Rightarrow P1$

• Better, we could just show $\{P2\} S \{Q\}$ where $P2$ is the **weakest precondition** of Q for S
 - Weakest means the most lenient assumptions such that Q will hold after executing S
 - Any precondition P such that $\{P\} S \{Q\}$ is valid will be stronger than $P2$, i.e., $P \Rightarrow P2$

• Amazing (?): Without loops/methods, for any S and Q, there exists a unique weakest precondition, written $wp(S,Q)$
 - Like our general rules with backward reasoning
Weakest preconditions

• $\text{wp}(x = e; , Q)$ is Q with each x replaced by e
 – Example: $\text{wp}(x = y*y; , x > 4) = y*y > 4$, i.e., $|y| > 2$

• $\text{wp}(S1; S2, Q)$ is $\text{wp}(S1, \text{wp}(S2, Q))$
 – i.e., let R be $\text{wp}(S2, Q)$ and overall wp is $\text{wp}(S1, R)$
 – Example: $\text{wp}((y=x+1; z=y+1;, z > 2) = (x + 1) + 1 > 2$, i.e., $x > 0$

• $\text{wp}(\text{if } b \text{ S1 else S2, Q})$ is this logic formula:
 \[(b \land \text{wp}(S1,Q)) \lor (\lnot b \land \text{wp}(S2,Q))\]
 – (In any state, b will evaluate to either true or false…)
 – (You can sometimes then simplify the result)
Simple examples

- If S is $x = y \cdot y$ and Q is $x > 4$, then $wp(S,Q)$ is $y \cdot y > 4$, i.e., $|y| > 2$

- If S is $y = x + 1; z = y - 3; \text{and } Q$ is $z = 10$, then $wp(S,Q)$...

 $= wp(y = x + 1; z = y - 3; , z = 10)$
 $= wp(y = x + 1; , wp(z = y - 3; , z = 10))$
 $= wp(y = x + 1; , y-3 = 10)$
 $= wp(y = x + 1; , y = 13)$
 $= x+1 = 13$
 $= x = 12$
Bigger example

\[S \text{ is } \begin{cases} \text{if } (x < 5) \{ \\ x = x \times x; \\ \} \text{ else } \{ \\ x = x+1; \\ \} \end{cases} \]

\[Q \text{ is } x \geq 9 \]

\[\text{wp}(S, x \geq 9) \]
\[= (x < 5 \land \text{wp}(x = x \times x; , x \geq 9)) \]
\[\lor (x \geq 5 \land \text{wp}(x = x+1; , x \geq 9)) \]
\[= (x < 5 \land x \times x \geq 9) \]
\[\lor (x \geq 5 \land x+1 \geq 9) \]
\[= (x \leq -3) \lor (x \geq 3 \land x < 5) \]
\[\lor (x \geq 8) \]
If-statements review

Forward reasoning

<table>
<thead>
<tr>
<th>Condition</th>
<th>Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>{P}</td>
<td></td>
</tr>
<tr>
<td>if B</td>
<td></td>
</tr>
<tr>
<td>{P ∧ B}</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>{Q1}</td>
<td></td>
</tr>
<tr>
<td>else</td>
<td></td>
</tr>
<tr>
<td>{P ∧ !B}</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>{Q2}</td>
<td></td>
</tr>
<tr>
<td>{Q1 ∨ Q2}</td>
<td></td>
</tr>
</tbody>
</table>

Backward reasoning

<table>
<thead>
<tr>
<th>Condition</th>
<th>Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ (B ∧ wp(S1, Q)) ∨ (!B ∧ wp(S2, Q)) }</td>
<td></td>
</tr>
<tr>
<td>if B</td>
<td></td>
</tr>
<tr>
<td>{wp(S1, Q)}</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>{Q}</td>
<td></td>
</tr>
<tr>
<td>else</td>
<td></td>
</tr>
<tr>
<td>{wp(S2, Q)}</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td></td>
</tr>
<tr>
<td>{Q}</td>
<td></td>
</tr>
<tr>
<td>{Q}</td>
<td></td>
</tr>
</tbody>
</table>
“Correct”

- If \(\text{wp}(S, Q) \) is \text{true}, then executing \(S \) will always produce a state where \(Q \) holds
 - \text{true} holds for every program state
One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:

 \{\textbf{true}\}

 \begin{align*}
 w & = x + y; \\
 \{w = x + y;\} \& \\
 x & = 4; \\
 \{w = x + y \land x = 4\} \& \\
 y & = 3; \\
 \{w = x + y \land x = 4 \land y = 3\}
 \end{align*}

 But clearly we do not know \(w=7\)!
The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the “old contents”

• Corrected example:

 `{true}`
 `w=x+y;`
 `{w = x + y;}`
 `x=4;`
 `{w = x1 + y ∧ x = 4}`
 `y=3;`
 `{w = x1 + y1 ∧ x = 4 ∧ y = 3}`
Useful example: swap

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

\[
\{ x = x_{pre} \land y = y_{pre} \}\
\]
\[
tmp = x; \\
\{ x = x_{pre} \land y = y_{pre} \land \ tmp=x \}\
\]
\[
x = y; \\
\{ x = y \land y = y_{pre} \land \ tmp=x_{pre} \}\
\]
\[
y = tmp; \\
\{ x = y_{pre} \land y = \ tmp \land \ tmp=x_{pre} \}\
\]