Announcements

• Discussion board: be sure to post a reply to the welcome message

• Next few lectures: two presentations on the web:
 – Lecture notes
 – Powerpoint slides
• They are complementary and you should understand both of them

• HW1 out later today or first thing tomorrow. Programming logic with no loops. Due Wed. night.

• HW0 due before class Friday – formal reasoning (i.e., contents of this and later lectures) not expected; clear informal arguments OK
Reasoning about code

Determine what facts are true as a program executes
 – Under what assumptions

Examples:
 – If x starts positive, then y is 0 when the loop finishes
 – Contents of the array that arr refers to are sorted
 – Except at one code point, x + y == z
 – For all instances of Node n,
 n.next == null ∨ n.next.prev == n
 – ...

Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once (“If $x > 0$, …”)
 • Prove a program correct (or find bugs trying), or (even better) develop program and proof together to get a program that is correct by construction
 • Understand why code is correct

• Stating assumptions is the essence of specification
 – “Callers must not pass null as an argument”
 – “Callee will always return an unaliased object”
 – …
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

• Programmers rarely “use Hoare logic” in this much detail
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But can be very useful to develop and reason about loops and data with subtle invariants
 • Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World® (coming lectures)
Example

Forward reasoning:

- Suppose we initially know (or assume) \(w > 0 \)

  ```
  // w > 0
  x = 17;
  // w > 0 ∧ x == 17
  y = 42;
  // w > 0 ∧ x == 17 ∧ y == 42
  z = w + x + y;
  // w > 0 ∧ x == 17 ∧ y == 42 ∧ z > 59
  ...
  ```

- Then we know various things after, including \(z > 59 \)
Example

Backward reasoning:

- Suppose we want z to be negative at the end

```
// w + 17 + 42 < 0
x = 17;
// w + x + 42 < 0
y = 42;
// w + x + y < 0
z = w + x + y;
// z < 0
```

- Then we know initially we need to know/assume $w < -59$
 - Necessary and sufficient
Forward vs. Backward, Part 1

• Forward reasoning:
 – Determine what follows from initial assumptions
 – Most useful for maintaining an invariant

• Backward reasoning
 – Determine sufficient conditions for a certain result
 • If result desired, the assumptions suffice for correctness
 • If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

• Forward reasoning:
 – Simulates the code (for many “inputs” “at once”)
 – Often more intuitive
 – But introduces [many] facts irrelevant to a goal

• Backward reasoning
 – Often more useful: Understand what each part of the code contributes toward the goal
 – “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
Conditionals

// initial assumptions
if(...) {
 ... // also know test evaluated to true
} else {
 ... // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression
2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially $x \geq 0$

```plaintext
// x >= 0
z = 0;
// x >= 0 ∧ z == 0
if(x != 0) {
  // x >= 0 ∧ z == 0 ∧ x != 0 (so x > 0)
  z = x;
  // ... ∧ z > 0
} else {
  // x >= 0 ∧ z == 0 ∧ !(x!=0) (so x == 0)
  z = x + 1;
  // ... ∧ z == 1
}
// ( ... ∧ z > 0) v (... ∧ z == 1) (so z > 0)
```
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Some notation and terminology

• The “assumption” before some code is the **precondition**
• The “what holds after (given assumption)” is the **postcondition**

• Instead of writing pre/postconditions after //, write them in {...}
 – This is not Java
 – How Hoare logic has been written “on paper” for 40ish years

    ```
    { w < -59 }
    x = 17;
    { w + x < -42 }
    ```
 – In pre/postconditions, = is equality, not assignment
 • Math’s “=”, which for numbers is Java’s ==

      ```
      { w > 0 ∧ x = 17 }
      y = 42;
      { w > 0 ∧ x = 17 ∧ y = 42 }
      ```
What an assertion means

• An **assertion** (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

• A **program state** is something that “given” a variable can “tell you” its contents
 – Or any expression that has no **side-effects**

• An assertion holds for a program state, if evaluating using the program state produces **true**
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the set of (exactly the) states for which it holds
A Hoare Triple

• A Hoare triple is two assertions and one piece of code:
 \[\{ P \} \ S \ { Q} \]
 – \(P \) the precondition
 – \(S \) the code (statement)
 – \(Q \) the postcondition

• A Hoare triple \(\{ P \} \ S \ { Q} \) is (by definition) valid if:
 – For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
 – Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
 – Else the Hoare triple is invalid
Examples

Valid or invalid?
 – (Assume all variables are integers without overflow)

• \(\{x \neq 0\} \ y = x \times x; \ \{y > 0\} \)
• \(\{z \neq 1\} \ y = z \times z; \ \{y \neq z\} \)
• \(\{x \geq 0\} \ y = 2 \times x; \ \{y > x\} \)
• \(\{\text{true}\} \ (\text{if}(x > 7) \ \{y=4;\} \ \text{else} \ \{y=3;\}) \ \{y < 5\} \)
• \(\{\text{true}\} \ (x = y; \ z = x;) \ \{y=z\} \)
• \(\{x=7 \ \land \ y=5\} \)
 (tmp=x; x=tmp; y=x;)
 \(\{y=7 \ \land \ x=5\} \)
Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

 • \{x \neq 0\} y = x*x; \{y > 0\} \text{ valid}
 • \{z \neq 1\} y = z*z; \{y \neq z\} \text{ invalid}
 • \{x \geq 0\} y = 2*x; \{y > x\} \text{ invalid}
 • \{true\} (if(x > 7) \{y=4;\} else \{y=3;\}) \{y < 5\} \text{ valid}
 • \{true\} (x = y; z = x;) \{y=z\} \text{ valid}
 • \{x=7 \land y=5\} \text{ invalid}
 (tmp=x; x=tmp; y=x;)
 \{y=7 \land x=5\}
Aside: assert in Java

• An assertion in Java is a statement with a Java expression, e.g.,
 \[\text{assert } x > 0 \land y < x; \]

• Similar to our assertions
 – Evaluate using a program state to get \text{true} or \text{false}
 – Uses Java syntax

• In Java, this is a \textit{run-time thing}: Run the code and raise an exception if assertion is violated
 – Unless assertion-checking is disabled
 – Later course topic

• This week: we are reasoning about the code, not running it on some input
The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture:] A rule for loops
 – …
Basic rule: Assignment

\{P\} x = e; \{Q\}

• Let Q’ be like Q except replace every x with e
• Triple is valid if:
 For all program states, if P holds, then Q’ holds
 – That is, P implies Q’, written P => Q’

• Example: \{z > 34\} y=z+1; \{y > 1\}
 – Q’ is \{z+1 > 1\}
Combining rule: Sequence

\{P\} S1;S2 \{Q\}

- Triple is valid if and only if there is an assertion R such that
 - $\{P\}S1\{R\}$ is valid, and
 - $\{R\}S2\{Q\}$ is valid

- Example: $\{z \geq 1\} y=z+1; w=y*y; \{w > y\}$ (integers)
 - Let R be $\{y > 1\}$
 - Show $\{z \geq 1\} y=z+1; \{y > 1\}$
 - Use rule for assignments: $z \geq 1$ implies $z+1 > 1$
 - Show $\{y > 1\} w=y*y; \{w > y\}$
 - Use rule for assignments: $y > 1$ implies $y*y > y$
Combining rule: Conditional

\[
\{P\} \text{ if}(b) \ S1 \ \text{else} \ S2 \ \{Q\}
\]

• Triple is valid if and only if there are assertions \(Q1, Q2\) such that
 - \(\{P \land b\}S1\{Q1\}\) is valid, and
 - \(\{P \land \neg b\}S2\{Q2\}\) is valid, and
 - \(Q1 \lor Q2\) implies \(Q\)

• Example: \{true\} (if(x > 7) y=x; else y=20;) \{y > 5\}
 - Let \(Q1\) be \{y > 7\} (other choices work too)
 - Let \(Q2\) be \{y = 20\} (other choices work too)
 - Use assignment rule to show \{true \land x > 7\}y=x;\{y>7\}
 - Use assignment rule to show \{true \land x \leq 7\}y=20;\{y=20\}
 - Indicate \(y>7 \lor y=20\) implies \(y>5\)
Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops
Weaker vs. Stronger

If \(P1 \) implies \(P2 \) (written \(P1 \implies P2 \)), then:
- \(P1 \) is **stronger** than \(P2 \)
- \(P2 \) is **weaker** than \(P1 \)

- Whenever \(P1 \) holds, \(P2 \) also holds
- So it is more (or at least as) “difficult” to satisfy \(P1 \)
 - The program states where \(P1 \) holds are a subset of the program states where \(P2 \) holds
- So \(P1 \) puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

- $x = 17$ is stronger than $x > 0$

- x is prime is neither stronger nor weaker than x is odd

- x is prime and $x > 2$ is stronger than x is odd and $x > 2$

- ...

Why this matters to us

• Suppose:
 – \(\{P\} S \{Q\} \), and
 – \(P \) is weaker than some \(P_1 \), and
 – \(Q \) is stronger than some \(Q_1 \)

• Then: \(\{P_1\} S \{Q\} \) and \(\{P\} S \{Q_1\} \) and \(\{P_1\} S \{Q_1\} \)

• Example:
 – \(P \) is \(x \geq 0 \)
 – \(P_1 \) is \(x > 0 \)
 – \(S \) is \(y = x+1 \)
 – \(Q \) is \(y > 0 \)
 – \(Q_1 \) is \(y \geq 0 \)
So...

• For backward reasoning, if we want \(\{P\}S\{Q\} \), we could instead:
 – Show \(\{P1\}S\{Q\} \), and
 – Show \(P \Rightarrow P1 \)

• Better, we could just show \(\{P2\}S\{Q\} \) where \(P2 \) is the **weakest precondition** of \(Q \) for \(S \)
 – Weakest means the most lenient assumptions such that \(Q \) will hold after executing \(S \)
 – Any precondition \(P \) such that \(\{P\}S\{Q\} \) is valid will be stronger than \(P2 \), i.e., \(P \Rightarrow P2 \)

• Amazing (?): Without loops/methods, for any \(S \) and \(Q \), there exists a unique weakest precondition, written \(\text{wp}(S,Q) \)
 – Like our general rules with backward reasoning
Weakest preconditions

• \(wp(x = e; Q)\) is \(Q\) with each \(x\) replaced by \(e\)
 - Example: \(wp(x = y*y; x > 4) = y*y > 4\), i.e., \(|y| > 2\)

• \(wp(S1; S2, Q)\) is \(wp(S1, wp(S2, Q))\)
 - i.e., let \(R\) be \(wp(S2, Q)\) and overall \(wp\) is \(wp(S1, R)\)
 - Example: \(wp((y=x+1; z=y+1); z > 2) = (x + 1) + 1 > 2\), i.e., \(x > 0\)

• \(wp(if\ b\ S1\ else\ S2, Q)\) is this logic formula:
 \[(b \land wp(S1, Q)) \lor (!b \land wp(S2, Q)) \]
 - (In any state, \(b\) will evaluate to either true or false…)
 - (You can sometimes then simplify the result)
Simple examples

• If S is $x = y \cdot y$ and Q is $x > 4$, then $wp(S,Q)$ is $y \cdot y > 4$, i.e., $|y| > 2$

• If S is $y = x + 1; z = y - 3$; and Q is $z = 10$, then $wp(S,Q)$...
 $= wp(y = x + 1; z = y - 3; z = 10)$
 $= wp(y = x + 1; wp(z = y - 3; z = 10))$
 $= wp(y = x + 1; y - 3 = 10)$
 $= wp(y = x + 1; y = 13)$
 $= x + 1 = 13$
 $= x = 12$
Bigger example

S is if (x < 5) {
 x = x*x;
} else {
 x = x+1;
}

Q is x >= 9

\[
wp(S, x >= 9) = (x < 5 \land wp(x = x*x;, x >= 9)) \\
\lor (x >= 5 \land wp(x = x+1;, x >= 9))
\]

= (x < 5 \land x*x >= 9)
\lor (x >= 5 \land x+1 >= 9)
\]

= (x <= -3) \lor (x >= 3 \land x < 5)
\lor (x >= 8)
If-statements review

Forward reasoning

\[
\{ P \}
\]

if \(B \)
\[
\{ P \land B \}
\]

\(S_1 \)
\[
\{ Q_1 \}
\]

else
\[
\{ P \land \neg B \}
\]

\(S_2 \)
\[
\{ Q_2 \}
\]

\(Q_1 \lor Q_2 \)

Backward reasoning

\[
\{ (B \land wp(S_1, Q)) \lor (\neg B \land wp(S_2, Q)) \}
\]

if \(B \)
\[
\{ wp(S_1, Q) \}
\]

\(S_1 \)
\[
\{ Q \}
\]

else
\[
\{ wp(S_2, Q) \}
\]

\(S_2 \)
\[
\{ Q \}
\]

{Q}
“Correct”

• If $wp(S,Q)$ is $true$, then executing S will always produce a state where Q holds
 - $true$ holds for every program state
One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:

 \{true\}
 \texttt{w=x+y;}
 \{w = x + y;} \texttt{x=4;}
 \{w = x + y \land x = 4\}
 \texttt{y=3;}
 \{w = x + y \land x = 4 \land y = 3\}
 But clearly we do not know \texttt{w=7}!
The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the “old contents”

• Corrected example:

 \{true\}
 \w=x+y;
 \{w = x + y;\}
 x=4;
 \{w = x_1 + y \land x = 4\}
 y=3;
 \{w = x_1 + y_1 \land x = 4 \land y = 3\}
Useful example: swap

• Swap contents
 – Give a name to initial contents so we can refer to them in the post-condition
 – Just in the formulas: these “names” are not in the program
 – Use these extra variables to avoid “forgetting” “connections”

\[
\{ x = x_pre \land y = y_pre \}
\]
\[
tmp = x;
\]
\[
\{ x = x_pre \land y = y_pre \land tmp=x \}
\]
\[
x = y;
\]
\[
\{ x = y \land y = y_pre \land tmp=x_pre \}
\]
\[
y = tmp;
\]
\[
\{ x = y_pre \land y = tmp \land tmp=x_pre \}
\]