Section 6: Interfaces
Midterm Practice

Slides by Vinod Rathnam

with material from Alex Mariakakis
Kellen Donohue, David Mailhot, and Hal Perkins
AGENDA

- Interface
- Midterm
 - Wednesday, February 18th
 - 50 minutes, 10:30am-11:20am
 - **Review Session**: Next Tuesday, February 17th
 4:30pm
 - Study!
The fundamental unit of programming in Java is a class
+ everything is defined in some class

But Java also provides interfaces…

Classes can extend other classes and implement interfaces…

Interfaces can extend other interfaces…

Some classes are abstract…
RELATIONSHIPS BETWEEN CLASSES

How do we express relationships between classes?

Inheritance captures what we want if one class “is-a” specialization of another

```java
class Cat extends Mammal { ... }
```

But that’s not right for unrelated classes that share a behavior or concept:

- e.g., Strings, Sets, and Dates are “Comparable” but there are no “is-a” relationships between them

And what if we want a class with multiple properties?

- Can’t extend multiple classes, even if that would do what we want…
Java Interfaces

- Pure type declaration. Example (without generics):
  ```java
  public interface Comparable {
      int compareTo(Object other);
  }
  ```

- Can contain:
 - Method specifications (*no* implementations)
 - implicitly `public abstract`
 - Named constants
 - implicitly `public final static`

- Cannot create instances of interfaces – they’re abstract
 - e.g., can’t do `Comparable c = new Comparable();`
IMPLEMENTING INTERFACES

- A class can implement one or more interfaces:
  ```
  class Gadget implements Comparable{
  ...
  }
  ```

- Semantics:
 - The implementing class and its instances have the interface type(s) as well as the class type(s)
 - The class must provide or inherit an implementation of all methods defined in the interface(s)
An interface defines a type, so we can declare variables and parameters of that type.

A variable with an interface type can refer to an object of *any* class implementing that type.

Examples:

```java
List<String> x = new ArrayList<String>();
List<String> y = new LinkedList<String>();
```
For example

```java
void mangle(List victim) { ... }
```

Method argument can be anything that has type `List` (like an `ArrayList` or `LinkedList`)
GUIDELINES FOR INTERFACES

- Provide interfaces for significant types / abstractions
- Write code using interface types like `Map` wherever possible; only use specific classes like `HashMap` or `TreeMap` when you need to
 - Allows code to work with different implementations later
- Consider providing classes with complete or partial interface implementation for direct use or subclassing
- Both interfaces and classes are appropriate in various circumstances
Using backwards reasoning, find the weakest precondition for each sequence of statements and postcondition below. Insert appropriate assertions in each blank line. You should simplify your answers if possible.

\{
\}

\text{z = x + y;}
\{
\}

\text{y = z - 3;}
\{ \text{x > y} \}
Using backwards reasoning, find the weakest precondition for each sequence of statements and postcondition below. Insert appropriate assertions in each blank line. You should simplify your answers if possible.

\{
\}

\[z = x + y; \]
\{ \{ x > z - 3 \} \}

\[y = z - 3; \]
\{ \{ x > y \} \}
Using backwards reasoning, find the weakest precondition for each sequence of statements and postcondition below. Insert appropriate assertions in each blank line. You should simplify your answers if possible.

\{ x > x + y - 3 \Rightarrow y < 3 \}

z = x + y;
\{ x > z - 3 \}
y = z - 3;
\{ x > y \}
Using backwards reasoning, find the weakest precondition for each sequence of statements and postcondition below. Insert appropriate assertions in each blank line. You should simplify your answers if possible.

\{ \underline{\text{ }} \}\
\ p = a + b; \\
\{ \underline{\text{ }} \}\
\ q = a - b; \\
\{ p + q = 42 \}
Using backwards reasoning, find the weakest precondition for each sequence of statements and postcondition below. Insert appropriate assertions in each blank line. You should simplify your answers if possible.

\{ ________________ \}
p = a + b;
\{ p + a - b = 42 \}
q = a - b;
\{ p + q = 42 \}
Using backwards reasoning, find the weakest precondition for each sequence of statements and postcondition below. Insert appropriate assertions in each blank line. You should simplify your answers if possible.

\[
\{ a + b + a - b = 42 \Rightarrow a = 21 \}\]

\[p = a + b;\]

\[\{ p + a - b = 42 \}\]

\[q = a - b;\]

\[\{ p + q = 42 \}\]
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

I. void withdraw(int amount) {
 balance -= amount;
}

Another way to ask the question:

If the client does not know the implementation, will the method do what he/she expects it to do based on the specification?
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. `@effects` decreases balance by amount
B. `@requires` amount >= 0 and amount <= balance
 `@effects` decreases balance by amount
C. `@throws` `InsufficientFundsException` if balance < amount
 `@effects` decreases balance by amount

Which specifications does this implementation meet?

I. `void withdraw(int amount) {
 balance -= amount;
}
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The method does exactly what the spec says
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

I. `void withdraw(int amount) {
 balance -= amount;
}

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

a. The method does exactly what the spec says
b. If the client follows the `@requires` precondition, the code will execute as expected
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. `@effects` decreases balance by amount
B. `@requires` amount >= 0 and amount <= balance
 `@effects` decreases balance by amount
C. `@throws` `InsufficientFundsException` if balance < amount
 `@effects` decreases balance by amount

Which specifications does this implementation meet?

I. `void withdraw(int amount) {
 balance -= amount;
}`

 a. The method does exactly what the spec says
 b. If the client follows the `@requires` precondition, the code will execute as expected
 c. The method does not throw an exception
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
}
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

II. `void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
 }

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>
| O | | | a. The balance will not always decrease
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

II. void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
 }

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>O</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

a. The balance will not always decrease
b. If the client follows the `@requires` precondition, the code will execute as expected
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

II. `void withdraw(int amount) {
 if (balance >= amount) balance -= amount;
}

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>X</td>
<td></td>
<td>O</td>
</tr>
</tbody>
</table>

- a. The balance will not always decrease
- b. If the client follows the @requires precondition, the code will execute as expected
- c. The method does not throw an exception
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

```java
III. void withdraw(int amount) {
    if (amount < 0) throw new IllegalArgumentException();
    balance -= amount;
}
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

III. void withdraw(int amount) {
 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

a. The balance will not always decrease
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount \(\geq 0 \) and amount \(\leq \) balance
@effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
@effects decreases balance by amount

Which specifications does this implementation meet?

III. void withdraw(int amount) {
 if (amount < 0) throw new `IllegalArgumentException`();
 balance -= amount;
}

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

a. The balance will not always decrease
b. If the client follows the @requires precondition, the code will execute as expected
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

III. void withdraw(int amount) {
 if (amount < 0) throw new IllegalArgumentException();
 balance -= amount;
}

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>O</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>

da. The balance will not always decrease
b. If the client follows the @requires precondition, the code will execute as expected
c. The method throws the wrong kind of exception and for the wrong reason
Suppose we have a BankAccount class with instance variable balance. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws InsufficientFundsException if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws InsufficientFundsException{
 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
}
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

IV. `void withdraw(int amount) throws InsufficientFundsException{
 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
 }`

a. The balance will not always decrease
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. `@effects` decreases balance by amount
B. `@requires` amount >= 0 and amount <= balance
 `@effects` decreases balance by amount
C. `@throws` `InsufficientFundsException` if balance < amount
 `@effects` decreases balance by amount

Which specifications does this implementation meet?

IV. `void withdraw(int amount) throws InsufficientFundsException{
 if (balance < amount) throw new InsufficientFundsException();
 balance -= amount;
 }

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

- a. The balance will not always decrease
- b. If the client follows the `@requires` precondition, the code will execute as expected
Suppose we have a `BankAccount` class with instance variable `balance`. Consider the following specifications:

A. @effects decreases balance by amount
B. @requires amount >= 0 and amount <= balance
 @effects decreases balance by amount
C. @throws `InsufficientFundsException` if balance < amount
 @effects decreases balance by amount

Which specifications does this implementation meet?

IV. void withdraw(int amount) throws `InsufficientFundsException`{
 if (balance < amount) throw new `InsufficientFundsException`();
 balance -= amount;
}

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

a. The balance will not always decrease
b. If the client follows the @requires precondition, the code will execute as expected
c. The method does exactly what the spec says
/**
* An IntPoly is an immutable, integer-valued polynomial
* with integer coefficients. A typical IntPoly value
* is $a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$. An IntPoly
* with degree n has coefficient $a_n \neq 0$, except that the
* zero polynomial is represented as a polynomial of
* degree 0 and $a_0 = 0$ in that case.
*/

public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.
}
public class IntPoly {

 /**
 * Return a new IntPoly that is the sum of this and other
 * @requires
 * @modifies
 * @effects
 * @return
 * @throws
 */
 public IntPoly add(IntPoly other);
}
public class IntPoly {

/**
 * Return a new IntPoly that is the sum of this and other
 * @requires other != null
 * @modifies none
 * @effects none
 * @return a new IntPoly that is the sum of this and the other
 * @throws none
 */

public IntPoly add(IntPoly other);
public class IntPoly {
 /**
 * Return a new IntPoly that is the sum of this and other
 * @requires other != null
 * @modifies none
 * @effects none
 * @return a new IntPoly that is the sum of this and the other
 * @throws none
 */
 public IntPoly add(IntPoly other);
}

Note: if you have an instance variable in @modifies, it better appear in @effects as well.
public class IntPoly {
 /**
 * Return a new IntPoly that is the sum of this and other
 * @requires other != null
 * @modifies none Note: if you have an instance variable in
 * @modifies, it better appear in @effects as well
 * @effects none Note2: this is not the only answer, you could
 * specify an exception in @throws or specify the
 * output in @return
 * @return a new IntPoly that is the sum of this and the other
 * @throws none
 */
 public IntPoly add(IntPoly other);
public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.

 // Return the coefficients of this IntPoly
 public int[] getCoeffs() {
 return a;
 }
}

One of your colleagues is worried that this creates a potential representation exposure problem. Another colleague says there’s no problem since an IntPoly is immutable. Is there a problem? Give a brief justification for your answer.
public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.

 // Return the coefficients of this IntPoly
 public int[] getCoeffs() {
 return a;
 }
}

One of your colleagues is worried that this creates a potential representation exposure problem. Another colleague says there’s no problem since an IntPoly is immutable. Is there a problem? Give a brief justification for your answer.

Yes there is a problem. The return value is a reference to the same coefficient array stored in the IntPoly and the client code could alter those coefficients.
public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.

 // Return the coefficients of this IntPoly
 public int[] getCoeffs() {
 return a;
 }
}

If there is a representation exposure problem, give a new or repaired implementation of getCoeffs() that fixes the problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise description of the changes needed instead of writing the detailed Java code.
public class IntPoly {
 int a[];
 // AF(this) = a has n+1 entries, and for each entry,
 // a[i] = coefficient a_i of the polynomial.

 // Return the coefficients of this IntPoly
 public int[] getCoeffs() {
 return a;
 }
}

If there is a representation exposure problem, give a new or repaired implementation of getCoeffs() that fixes the problem but still returns the coefficients of the IntPoly to the client. If it saves time you can give a precise description of the changes needed instead of writing the detailed Java code.

Create a new array the same length as a, copy the contents of a to it, and return the new array.
We would like to add a method to this class that evaluates the \texttt{IntPoly} at a particular value \(x \). In other words, given a value \(x \), the method \texttt{valueAt(x)} should return \(a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \), where \(a_0 \) through \(a_n \) are the coefficients of this \texttt{IntPoly}.

For this problem, develop an implementation of this method and prove that your implementation is correct.
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {_____}
 while (k != n) {
 {_____}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {_____}
 xk = xk * x;
 {_____}
 val = val + a[k+1]*xk;
 {_____}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {______}
 val = val + a[k+1]*xk;
 {______}
 k = k +1;
 {______}
 }
 {______}
 return val;
}
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
 val = val + a[k+1]*xk;
 {_____}
 k = k +1;
 {_____}
 }
 {_____}
 return val;
}
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + … + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && val = a[0] + a[1]*x + … + a[k+1]*x^(k+1)}
 k = k + 1;
 {_____}
 }
 return val;
}
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 \{inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}\n while (k != n) {
 \{inv && k != n\}
 xk = xk * x;
 \{xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k\}
 val = val + a[k+1]*xk;
 \{xk = x^(k+1) && a[0] + a[1]*x + ... + a[k+1]*x^(k+1)\}
 k = k +1;
 \{inv\}
 }
 \{______\}
 return val;
}
/** Return the value of this IntPoly at point x */
public int valueAt(int x) {
 int val = a[0];
 int xk = 1;
 int k = 0;
 int n = a.length-1; // degree of this, n >=0
 {inv: xk = x^k && val = a[0] + a[1]*x + ... + a[k]*x^k}
 while (k != n) {
 {inv && k != n}
 xk = xk * x;
 {xk = x^(k+1) && val = a[0] + a[1]*x + ... + a[k]*x^k}
 val = val + a[k+1]*xk;
 {xk = x^(k+1) && a[0] + a[1]*x + ... + a[k+1]*x^(k+1)}
 k = k +1;
 {inv}
 }
 {inv && k = n => val = a[0] + a[1]*x + ... + a[n]*x^n}
 return val;
Suppose we are defining a class to represent items stocked by an online grocery store. Here is the start of the class definition, including the class name and instance variables:

```java
public class StockItem {
    String name;
    String size;
    String description;
    int quantity;

    /* Construct a new StockItem */
    public StockItem(...);
}
```
A summer intern was asked to implement an `equals` function for this class that treats two `StockItem` objects as equal if their `name` and `size` fields match. Here’s the result:

```java
/** return true if the name and size fields match */
public boolean equals(StockItem other) {
    return name.equals(other.name) && size.equals(other.size);
}
```

This `equals` method seems to work sometimes but not always. Give an example showing a situation when it fails.
A summer intern was asked to implement an `equals` function for this class that treats two `StockItem` objects as equal if their `name` and `size` fields match. Here’s the result:

```java
/** return true if the name and size fields match */
public boolean equals(StockItem other) {
    return name.equals(other.name) && size.equals(other.size);
}
```

This `equals` method seems to work sometimes but not always. Give an example showing a situation when it fails.

```java
Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));
```
A summer intern was asked to implement an `equals` function for this class that treats two `StockItem` objects as equal if their `name` and `size` fields match. Here’s the result:

```java
/** return true if the name and size fields match */
public boolean equals(StockItem other) {
    return name.equals(other.name) && size.equals(other.size);
}
```

This `equals` method seems to work sometimes but not always. Give an example showing a situation when it fails.

```java
Object s1 = new StockItem("thing", 1, "stuff", 1);
Object s2 = new StockItem("thing", 1, "stuff", 1);
System.out.println(s1.equals(s2));
```

The equals method was overloaded, rather than overwritten
Show how you would fix the `equals` method so it works properly (StockItems are equal if their names and sizes are equal)

/** return true if the name and size fields match */
Show how you would fix the `equals` method so it works properly (StockItems are equal if their names and sizes are equal)

/** return true if the name and size fields match */
@ Override
public boolean equals(Object o) {
 if (!(o instanceof StockItem))
 return false;
 StockItem other = (StockItem) o;
 return name.equals(other.name) && size.equals(other.size);
Which of the following implementations of `hashCode()` are legal:

```java
public int hashCode() {
    return name.hashCode();
}

public int hashCode() {
    return name.hashCode() * 17 + size.hashCode();
}

public int hashCode() {
    return name.hashCode() * 17 + quantity;
}

public int hashCode() {
    return quantity;
}
```
Which of the following implementations of `hashCode()` are legal:

```java
public int hashCode() {
    return name.hashCode();
}

public int hashCode() {
    return name.hashCode() * 17 + size.hashCode();
}

public int hashCode() {
    return name.hashCode() * 17 + quantity;
}

public int hashCode() {
    return quantity;
}
```
Which of the following implementations of `hashCode()` are legal:

```java
public int hashCode() {
    return name.hashCode();
}
public int hashCode() {
    return name.hashCode() * 17 + size.hashCode();
}
public int hashCode() {
    return name.hashCode() * 17 + quantity;
}
public int hashCode() {
    return quantity;
}
```
Which of the following implementations of `hashCode()` are legal:

```java
public int hashCode() {
    return name.hashCode();
}
```

```java
public int hashCode() {
    return name.hashCode() * 17 + size.hashCode();
}
```

```java
public int hashCode() {
    return name.hashCode() * 17 + quantity;
}
```

```java
public int hashCode() {
    return quantity;
}
```
Which of the following implementations of `hashCode()` are legal:

```java
public int hashCode() {
    return name.hashCode();
}

public int hashCode() {
    return name.hashCode()*17 + size.hashCode();
}

public int hashCode() {
    return name.hashCode()*17 + quantity;
}

public int hashCode() {
    return quantity;
}
```
Which of the following implementations of `hashCode()` are legal:

<table>
<thead>
<tr>
<th>legal</th>
<th>wrong</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The equals method does not care about quantity
Which implementation do you prefer?

```java
public int hashCode() {
    return name.hashCode();
}

public int hashCode() {
    return name.hashCode() * 17 + size.hashCode();
}
```
Which implementation do you prefer?

```java
public int hashCode() {
    return name.hashCode();
}
```

```java
public int hashCode() {
    return name.hashCode()*17 + size.hashCode();
}
```

(ii) will likely do the best job since it takes into account both the size and name fields. (i) is also legal but it gives the same `hashCode` for `StockItems` that have different sizes as long as they have the same name, so it doesn’t differentiate between different `StockItems` as well as (ii).
Suppose we are specifying a method and we have a choice between either requiring a precondition (e.g., \texttt{@requires: n > 0}) or specifying that the method throws an exception under some circumstances (e.g., \texttt{@throws IllegalArgumentException if n <= 0}).

Assuming that neither version will be significantly more expensive to implement than the other and that we do not expect the precondition to be violated or the exception to be thrown in normal use, is there any reason to prefer one of these to the other, and, if so, which one?
Suppose we are specifying a method and we have a choice between either requiring a precondition (e.g., `@requires: n > 0`) or specifying that the method throws an exception under some circumstances (e.g., `@throws IllegalArgumentException if n <= 0`).

Assuming that neither version will be significantly more expensive to implement than the other and that we do not expect the precondition to be violated or the exception to be thrown in normal use, is there any reason to prefer one of these to the other, and, if so, which one?

It would be better to specify the exception. That reduces the domain of inputs for which the behavior of the method is unspecified. It also will cause the method to fail fast for incorrect input, which should make the software more robust – or at least less likely to continue execution with erroneous data.

Note: You could just as easily argue the other way. It may be better to specify the precondition because once the exception is in the specification, it has to stay there because the client may expect it.
Suppose we are trying to choose between two possible specifications for a method. One of the specifications S is stronger than the other specification W, but both include the behavior needed by clients. In practice, should we always pick the stronger specification S, always pick the weaker one W, or is it possible that either one might be the suitable choice? Give a brief justification of your answer, including a brief list of the main criteria to be used in making the decision.
Suppose we are trying to choose between two possible specifications for a method. One of the specifications S is stronger than the other specification W, but both include the behavior needed by clients. In practice, should we always pick the stronger specification S, always pick the weaker one W, or is it possible that either one might be the suitable choice? Give a brief justification of your answer, including a brief list of the main criteria to be used in making the decision.

Neither is necessarily better. What is important is picking a specification that is simple, promotes modularity and reuse, and can be implemented efficiently. (Many answers focused narrowly on which would be easier to implement. While that is important – we don’t want a specification that is impossible to build – it isn’t the main thing that determines whether a system design is good or bad.)
MIDTERM TOPICS

- Reasoning about code
- Specifications vs. Implementation
- ADT’s
- Interfaces & classes
- Testing
- Exceptions & assertions
- Identity & equality
- Subtypes & subclasses