Section 5:
HW6 and Interfaces

Slides adapted from Alex Mariakakis,
with material from Krysta Yousoufian, Mike Ernst, Kellen Donohue

Agenda

- Version control and tools review
- BFS

- Interfaces

- Parsing Marvel Data

331 Version control

N0 o8Yo

Working copy for A\
grading é

add

commit

update

Working copy

3
—

(/projects/instr/14au/cse331/

Where is my code?

YourCSENetIDIREPOS/cse
d 331)
updat —
P check out §oo o
e— |
commit
by
personal computer up dat g
o
c g
O,
validate

Z———""\
0

attu working copy
(/homes/iws/CSENETID/, or other
directory)

(../scratch from attu working copy)

Where is my code?

- Main repo: /projects/instr/etc
- Not human readable
- You can'’t see files here
- Personal computer: any directory, via Subclipse or other
- Working copy: add and edit files here
+ Must check in files for them to go to the repo
- attu working copy: /homes/iws/CSENETID/ or other
- Just another working copy, same as personal computer
- Must svn update to see changes from pc/repo
- validate copy: attu directory/src/.../scratch
- NEW WORKING COPY CHECKED OUT FROM REPO
- May NOT be the same as attu working copy if attu wasn’t updated

Concepts vs tools, 331 vs general

« Version control:
- Tools: svn, TortoiseSVN, Subclipse
- Ant:
+ Concept: build management
- validate
- Remote access:| o0
- Tools: ssh, PuTTY, WinSCP

- Javadocs:

- Concept: documentation

+ @param, @return, @throws general
- @requires, @modifies, @effects 331

concept

tool

Canlreach B
from A?

|
Breadth-First Search (BFS)

- Often used for discovering connectivity
- Calculates the shortest path if and only if all
edges have same positive or no weight
- Depth-first search (DFS) is commonly mentioned
with BFS
- BFS looks “wide”, DFS looks “deep”

- Can also be used for discovery, but not the shortest
path

BFS Pseudocode

public boolean find(Node start, Node end) {
put start node in a queue
while (queue is not empty) {
pop node N off queue
if (N is goal)
return true;
else {
for each node O that is child of N
push O onto queue
}
}

return false;

.
Breadth-First Search

Q: <>
Q: <A>
Q: <>

Q:
Q: <B, C>

Breadth-First Search with Cycle

<>
<A>
<>

<>
<C>
<>
C<A>
NEVER
DONE

RRLOOLOOLLR

DONE
.
BFS Pseudocode

public boolean find(Node start, Node end) {
put start node in a queue
while (queue is Rot empty) {
pop node N
if (N is goal

O that is child of N
nto queue

for each no
push O

return false;

) Mark the node as visited!

What if there’s a cycle?
What if there’s no path between start and end?

.
Breadth-First Search

Q: <>

E

.
Breadth-First Search

Q: <>
Q: <A>

.
Breadth-First Search

Q: <>
Q: <A>
Q: <>

.
Breadth-First Search

Q: <>
Q: <A>
Q: <>
Q: <C>

.
Breadth-First Search

Q: <>

Q: <A>
Q: <>

Q: <C>
Q: <C ,D>

.
Breadth-First Search

Q: <>

Q: <A>
Q: <>

Q: <C>
Q: <C ,D>
Q: <D>

.
Breadth-First Search

<>
<A>

<>
<C>
<C ,D>
<D>
<D, E>

ROOOLOLRL

.
Breadth-First Search

<>
<A>
<>

- <C>

. <C ,D>
- <D>

: <D, E>
s <E>

DOO0OLOPLOO

Breadth-First Search

POLOLOLOOLLR
JAN
o
\%

w)
©)
pd
m

From Node B

Destination Path Cost

From Node B

Destination Path Cost

Paths are not the same!

Classes, Interfaces, and Types

- The fundamental unit of programming in Java is a class

- Classes can extend other classes and implement
interfaces

- Interfaces can extend other interfaces

Classes, Objects, and Java

- Everything is an instance of a class
- Defines data and methods

- Every class extends exactly one other class
- Object if no explicit superclass
- Inherits superclass fields

- Every class also defines a type
- Foo defines type Foo
- Foo inherits all inherited types

- Java classes contain both specification and
implementation!

Interfaces

- Pure type declaration
public interface Comparable {
int compareTo (Object other);
}
- Can contain:
- Method specifications (implicitly public abstract)
- Named constants (implicitly public final static)
- Does not contain implementation

- Cannot create instances of interfaces

Implementing Interfaces

- A class can implement one or more interfaces

class Kitten implements Pettable, Huggable

- The implementing class and its instances have the
interface type(s) as well as the class type(s)

- The class must provide or inherit an implementation of all
methods defined by the interface(s)
- Not true for abstract classes

Using Interface Types

- An interface defines a type, so we can declare variables
and parameters of that type

- A variable with an interface type can refer to an object of
any class implementing that type
List<String> x = new ArrayList<String>();

void sort (List myList) {..}

Guidelines for Interfaces

- Provide interfaces for significant types and abstractions
- Write code using interface types like Map instead of
HashMap and TreeMap wherever possible
- Allows code to work with different implementations later on

- Both interfaces and classes are appropriate in various
circumstances

Demo

Parsing the Marvel data

