

Slides adapted from Alex Mariakakis,

with material from Krysta Yousoufian, Mike Ernst, Kellen Donohue

Section 5:
HW6 and Interfaces

Agenda

• Version control and tools review

• BFS

• Interfaces

• Parsing Marvel Data

331 Version control

Repository

create

Working copy update
c
o
m

m
it

c
h
e
c
k
 o

u
t

add

Working copy for

grading

Where is my code?

personal computer

(/projects/instr/14au/cse331/

YourCSENetID/REPOS/cse

331)

attu working copy
(/homes/iws/CSENETID/, or other

directory)

commit

update

attu scratch copy

update

(../scratch from attu working copy)

repo

Where is my code?

• Main repo: /projects/instr/etc

• Not human readable

• You can’t see files here

• Personal computer: any directory, via Subclipse or other

• Working copy: add and edit files here

• Must check in files for them to go to the repo

• attu working copy: /homes/iws/CSENETID/ or other

• Just another working copy, same as personal computer

• Must svn update to see changes from pc/repo

• validate copy: attu directory/src/…/scratch

• NEW WORKING COPY CHECKED OUT FROM REPO

• May NOT be the same as attu working copy if attu wasn’t updated

Concepts vs tools, 331 vs general

• Version control:

• Tools: svn, TortoiseSVN, Subclipse

• Ant:

• Concept: build management

• validate

• Remote access:

• Tools: ssh, PuTTY, WinSCP

• Javadocs:

• Concept: documentation

• @param, @return, @throws

• @requires, @modifies, @effects

concept

tool

tool

331

331

general

concept

Graphs

A B

C D

E

Can I reach B

from A?

Breadth-First Search (BFS)

• Often used for discovering connectivity

• Calculates the shortest path if and only if all

edges have same positive or no weight

• Depth-first search (DFS) is commonly mentioned

with BFS

• BFS looks “wide”, DFS looks “deep”

• Can also be used for discovery, but not the shortest

path

BFS Pseudocode

public boolean find(Node start, Node end) {

 put start node in a queue

 while (queue is not empty) {

 pop node N off queue

 if (N is goal)

 return true;

 else {

 for each node O that is child of N

 push O onto queue

 }

 }

 return false;

}

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q:

Q: <B, C>

DONE

A

B C

Breadth-First Search with Cycle

Q: <>

Q: <A>

Q: <>

Q:

Q: <>

Q: <C>

Q: <>

Q: <A>

NEVER

DONE

A

B C

BFS Pseudocode

public boolean find(Node start, Node end) {

 put start node in a queue

 while (queue is not empty) {

 pop node N off queue

 if (N is goal)

 return true;

 else {

 for each node O that is child of N

 push O onto queue

 }

 }

 return false;

}

What if there’s a cycle?

What if there’s no path between start and end?

Mark the node as visited!

Breadth-First Search

Q: <>

A

B

C D

E

Breadth-First Search

Q: <>

Q: <A>
A

B

C D

E

Breadth-First Search

Q: <>

Q: <A>

Q: <>
A

E

B

D C

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

A

C

E

B

D

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

A

C D

E

B

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

A

C D

B

E

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

A

C D

E

B

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

Q: <E>

A

C D

E

B

Breadth-First Search

Q: <>

Q: <A>

Q: <>

Q: <C>

Q: <C ,D>

Q: <D>

Q: <D, E>

Q: <E>

DONE

A

C D

E

B

Shortest Paths with BFS

Destination Path Cost

A <B,A> 1

B 0

C <B,A,C> 2

D <B,D> 1

E <B,D,E> 2

From Node B

A

B

C D

E

1

1

1

1 1

1

1

Shortest Paths with Weights

A

B

C D

E

Destination Path Cost

A <B,A> 2

B 0

C <B,A,C> 5

D <B,A,C,D> 7

E <B,A,C,E> 7

From Node B
2

100

2

6 2

3

100

Paths are not the same!

Classes, Interfaces, and Types

• The fundamental unit of programming in Java is a class

• Classes can extend other classes and implement

interfaces

• Interfaces can extend other interfaces

Classes, Objects, and Java

• Everything is an instance of a class

• Defines data and methods

• Every class extends exactly one other class

• Object if no explicit superclass

• Inherits superclass fields

• Every class also defines a type

• Foo defines type Foo

• Foo inherits all inherited types

• Java classes contain both specification and

implementation!

Interfaces

• Pure type declaration

 public interface Comparable {

 int compareTo(Object other);

 }

• Can contain:

• Method specifications (implicitly public abstract)

• Named constants (implicitly public final static)

• Does not contain implementation

• Cannot create instances of interfaces

Implementing Interfaces

• A class can implement one or more interfaces

class Kitten implements Pettable, Huggable

• The implementing class and its instances have the

interface type(s) as well as the class type(s)

• The class must provide or inherit an implementation of all

methods defined by the interface(s)

• Not true for abstract classes

Using Interface Types

• An interface defines a type, so we can declare variables

and parameters of that type

• A variable with an interface type can refer to an object of

any class implementing that type
List<String> x = new ArrayList<String>();

void sort(List myList) {…}

Guidelines for Interfaces

• Provide interfaces for significant types and abstractions

• Write code using interface types like Map instead of

HashMap and TreeMap wherever possible

• Allows code to work with different implementations later on

• Both interfaces and classes are appropriate in various

circumstances

Demo
Parsing the Marvel data

