
6/3/15	

1	

FINAL REVIEW

Stronger vs Weaker (one more time!)
• Requires more?

• Promises more? (stricter specifications on what the

effects entail)

weaker

stronger

Stronger vs Weaker

A.  @requires key is a key in this and key != null
 @return the value associated with key
B.  @return the value associated with key if key is a

key in this, or null if key is not associated
with any value

C.  @return the value associated with key
 @throws NullPointerException if key is null
 @throws NoSuchElementException if key is not a

key this

@requires key is a key in this
@return the value associated with key
@throws NullPointerException if key is null

WEAKER

STRONGER

NEITHER

Subtypes & Subclasses
• Subtypes are substitutable for supertypes
•  If Foo is a subtype of Bar, G<Foo> is a NOT a subtype

of G<Bar>
•  Aliasing resulting from this would let you add objects of type Bar to
G<Foo>, which would be bad!

•  Example:
List<String> ls = new ArrayList<String>();
List<Object> lo = ls;
lo.add(new Object());
String s = ls.get(0);

• Subclassing is done to reuse code (extends)
•  A subclass can override methods in its superclass

Typing and Generics
•  <?> is a wildcard for unknown

•  Upper bounded wildcard: type is wildcard or subclass
•  Eg: List<? extends Shape>
•  Illegal to write into (no calls to add!) because we can’t guarantee type

safety.
•  Lower bounded wildcard: type is wildcard or superclass

•  Eg: List<? super Integer>
•  May be safe to write into.

Subtypes & Subclasses
class Student extends Object { ... }
class CSEStudent extends Student { ... }

List<Student> ls;

List<? extends Student> les;

List<? super Student> lss;
List<CSEStudent> lcse;

List<? extends CSEStudent> lecse;
List<? super CSEStudent> lscse;

Student scholar;
CSEStudent hacker;

ls = lcse;

les = lscse;

lcse = lscse;

les.add(scholar);

lscse.add(scholar);

lss.add(hacker);

scholar = lscse.get(0);

hacker = lecse.get(0);

x
x
x

x
x

x

6/3/15	

2	

Subclasses & Overriding
class Foo extends Object {

 Shoe m(Shoe x, Shoe y){ ... }

}

class Bar extends Foo {...}

Method Declarations in Bar

•  FootWear m(Shoe x, Shoe y) { ... }

•  Shoe m(Shoe q, Shoe z) { ... }

•  HighHeeledShoe m(Shoe x, Shoe y) { ... }

•  Shoe m(FootWear x, HighHeeledShoe y) { ... }

•  Shoe m(FootWear x, FootWear y) { ... }

•  Shoe m(Shoe x, Shoe y) { ... }

•  Shoe m(HighHeeledShoe x, HighHeeledShoe y) { ... }

•  Shoe m(Shoe y) { ... }

•  Shoe z(Shoe x, Shoe y) { ... }

• The result is method overriding
• The result is method overloading
• The result is a type-error
• None of the above

Object
 ↓
 Foo
 ↓
 Bar

 Footwear
 ↓
 Shoe
 ↓
HighHeeledShoe

type-error

overriding
overriding

overloading

overloading
overriding

overloading

overloading

none (new method declaration)

Design Patterns
• Creational patterns: get around Java constructor

inflexibility
•  Sharing: singleton, interning, flyweight
•  Telescoping constructor fix: builder
•  Returning a subtype: factories

• Structural patterns: translate between interfaces
•  Adapter: same functionality, different interface
•  Decorator: different functionality, same interface
•  Proxy: same functionality, same interface, restrict access
•  All of these are types of wrappers

Design Patterns
•  Interpreter pattern:

•  Collects code for similar objects, spreads apart code for operations
(classes for objects with operations as methods in each class)

•  Easy to add objects, hard to add methods
•  Instance of Composite pattern

• Procedural patterns:
•  Collects code for similar operations, spreads apart code for objects

(classes for operations, method for each operand type)
•  Easy to add methods, hard to add objects
•  Ex: Visitor pattern

Design Patterns

• What pattern would you use to…
•  add a scroll bar to an existing window object in Swing

•  Decorator
•  We have an existing object that controls a communications

channel. We would like to provide the same interface to clients but
transmit and receive encrypted data over the existing channel.
•  Proxy

•  When the user clicks the “find path” button in the Campus Maps
application (hw9), the path appears on the screen.
•  MVC
•  Observer

 Adapter, Builder, Composite, Decorator, Factory, Flyweight, Iterator, Intern,
Interpreter, Model-View-Controller (MVC), Observer, Procedural, Prototype,
Proxy, Singleton, Visitor, Wrapper

