Connecting implementations to specs

Representation Invariant: maps Object → boolean
- Indicates if an instance is *well-formed*
- Defines the set of valid concrete values
- Only values in the valid set make sense as implementations of an abstract value
 - For implementors/debuggers/maintainers of the abstraction: no object should ever violate the rep invariant
 - Such an object has no useful meaning

Abstraction Function: maps Object → abstract value
- What the data structure *means* as an abstract value
- How the data structure is to be interpreted
- Only defined on objects meeting the rep invariant
- For implementors/debuggers/maintainers of the abstraction: Each procedure should meet its spec (abstract values) by “doing the right thing” with the concrete representation
Rep inv. constrains structure, not meaning

An implementation of `insert` that preserves the rep invariant:

```java
public void insert(Character c) {
    Character cc = new Character(encrypt(c));
    if (!elts.contains(cc))
        elts.addElement(cc);
}
```

```java
public boolean member(Character c) {
    return elts.contains(c);
}
```

Program is still wrong

– Clients observe incorrect behavior
– What client code exposes the error?
– Where is the error?
– We must consider the meaning
– The `abstraction function` helps us
Abstraction function: rep→abstract value

The **abstraction function** maps the concrete representation to the abstract value it represents

AF: Object → abstract value

AF(CharSet this) = { c | c is contained in this.elts }

“set of Characters contained in this.elts”

Not executable because abstract values are “just” conceptual

The abstraction function lets us reason about what [concrete] methods do in terms of the clients’ [abstract] view
Abstraction function and \textit{insert}

Goal is to satisfy the specification of insert:

\begin{verbatim}
// modifies: this
// effects: this_{post} = this_{pre} \cup \{c\}

public void insert (Character c) {...}
\end{verbatim}

The AF tells us what the rep means, which lets us place the blame

\[AF(\text{ CharSet this}) = \{ c \mid c \text{ is contained in } this.\text{elts} \} \]

Consider a call to \textit{insert}:

On \textit{entry}, meaning is \(AF(\text{this}_{\text{pre}}) = \text{elts}_{\text{pre}} \)

On \textit{exit}, meaning is \(AF(\text{this}_{\text{post}}) = AF(\text{this}_{\text{pre}}) \cup \{\text{encrypt('a')}\} \)

What if we used this abstraction function instead?

\[AF(\text{this}) = \{ c \mid \text{encrypt}(c) \text{ is contained in } this.\text{elts} \} \]

\[= \{ \text{decrypt}(c) \mid c \text{ is contained in } this.\text{elts} \} \]
The abstraction function is a function

Why do we map concrete to abstract and not vice versa?

• It’s not a function in the other direction
 – Example: lists \([a, b]\) and \([b, a]\) might each represent the set \(\{a, b\}\)

• It’s not as useful in the other direction
 – Purpose is to reason about whether our methods are manipulating concrete representations correctly in terms of the abstract specifications
Stack AF example

<table>
<thead>
<tr>
<th>Operation</th>
<th>State</th>
<th>New State</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>new()</code></td>
<td>0, 0, 0</td>
<td>0, 0, 0</td>
</tr>
<tr>
<td><code>push(17)</code></td>
<td>17, 0, 0</td>
<td>17, 0, 0</td>
</tr>
<tr>
<td><code>push(-9)</code></td>
<td>17, -9, 0</td>
<td>17, -9, 0</td>
</tr>
<tr>
<td><code>pop()</code></td>
<td>17, -9, 0</td>
<td>17, 0, 0</td>
</tr>
</tbody>
</table>

Abstract stack with array and “top” index implementation:

- Abstract states are the same: `stack = <17> = <17>`
- Concrete states are different: `<[17,0,0], top=1> ≠<[17,-9,0], top=1>`

AF is a function

Inverse of AF is not a function
Benevolent side effects

Different implementation of \texttt{member}:

```java
boolean member(Character c1) {
    int i = elts.indexOf(c1);
    if (i == -1)
        return false;
    // move-to-front optimization
    Character c2 = elts.elementAt(0);
    elts.set(0, c1);
    elts.set(i, c2);
    return true;
}
```

- Move-to-front speeds up repeated membership tests
- Mutates rep, but does not change \textit{abstract} value
 - \textit{AF maps both reps to the same abstract value}
 - Precise reasoning/explanation for “clients can’t tell”
For any correct operation…
Writing an abstraction function

Domain: all representations that satisfy the rep invariant

Range: can be tricky to denote
- For mathematical entities like sets: easy
- For more complex abstractions: give names to specification
 - AF defines the value of each “specification field”

Overview section of the specification should provide a notation of writing abstract values
- Could implement a method for printing in this notation
 - Useful for debugging
 - Often a good choice for `toString`
Data Abstraction: Summary

Rep invariant
 – Which concrete values represent abstract values

Abstraction function
 – For each concrete value, which abstract value it represents

Together, they modularize the implementation
 – Neither one is part of the ADT’s specification
 – Both are needed to reason an implementation satisfies the specification

In practice, representation invariants are documented more often and more carefully than abstraction functions
 – A more widely understood and appreciated concept