Announcements

- All sections have moved location:
 - Section AA 8:30-9:20 LOW206
 - Section AB 9:30-10:20 LOW206
 - Section AA 10:30-11:20 LOW202

- You should have received an email about talk-to-the-professor sign-ups

- Overloads to be decided by Friday: unfortunately many

- Next few lectures: read lecture notes posted on website in addition to flipping through slides

Reasoning about code

Determine what facts are true as a program executes

- Under what assumptions

Examples:
- If x starts positive, then y is 0 when the loop finishes
- Contents of the array that arr refers to are sorted
- Except at one code point, $x + y = z$
- For all instances of Node n,

 \[n.next == \text{null} \lor n.next.prev == n \]
- ...

Why do this?

- Essential complement to testing, which we will also study
 - Testing: Actual results for some actual inputs
 - Logical reasoning: Reason about whole classes of inputs/states at once ("if $x > 0$, …")
 - Prove a program correct (or find bugs trying)
 - Understand why code is correct
 - Stating assumptions is the essence of specification
 - "Callers must not pass null as an argument"
 - "Callee will always return an unaliased object"
 - ...

Our approach

- Hoare Logic: a 1970s approach to logical reasoning about code
 - For now, consider just variables, assignments, if-statements, while-loops
 - So no objects or methods
 - This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition
 - Next lecture: Loops

Why?

- Programmers rarely "use Hoare logic" in this much detail
 - For simple snippets of code, it's overkill
 - Gets very complicated with objects and aliasing
 - But occasionally useful for loops and data with subtle invariants
 - Examples: Homework 0, Homework 2
 - Also it's an ideal setting for the right logical foundations
 - How can logic "talk about" program states?
 - How does code execution "change what is true"?
 - What do "weaker" and "stronger" mean?

This is all essential for specifying library-interfaces, which does happen All the Time in The Real World® (coming lectures)
Example

Forward reasoning:
- Suppose we initially know (or assume) \(w > 0 \)
 \[
 \begin{align*}
 &// w > 0 \\
 &x = 17; \\
 &// w > 0 \land x == 17 \\
 &y = 42; \\
 &// w > 0 \land x == 17 \land y == 42 \\
 &z = w + x + y; \\
 &// w > 0 \land x == 17 \land y == 42 \land z > 59 \\
 \end{align*}
 \]
- Then we know various things after, including \(z > 59 \)

Example

Backward reasoning:
- Suppose we want \(z \) to be negative at the end
 \[
 \begin{align*}
 &// w + 17 + 42 < 0 \\
 &x = 17; \\
 &// w + x + 42 < 0 \\
 &y = 42; \\
 &// w + x + y < 0 \\
 &z = w + x + y; \\
 &// z < 0 \\
 \end{align*}
 \]
- Then we know initially we need to know/assume \(w < -59 \)
 * Necessary and sufficient

Forward vs. Backward, Part 1

- Forward reasoning:
 - Determine what follows from initial assumptions
 - Most useful for maintaining an invariant
- Backward reasoning
 - Determine sufficient conditions for a certain result
 - If result desired, the assumptions suffice for correctness
 - If result undesired, the assumptions suffice to trigger bug

Forward vs. Backward, Part 2

- Forward reasoning:
 - Simulates the code (for many "inputs" "at once")
 - Often more intuitive
 - But introduces [many] facts irrelevant to a goal
- Backward reasoning
 - Often more useful: Understand what each part of the code contributes toward the goal
 - "Thinking backwards" takes practice but gives you a powerful new way to reason about programs

Conditionals

```
// initial assumptions
if(…) {
  … // also know test evaluated to true
} else {
  … // also know test evaluated to false
} // either branch could have executed
```

Two key ideas:
1. The precondition for each branch includes information about the result of the test-expression
2. The overall postcondition is the disjunction ("or") of the postcondition of the branches

Example (Forward)

Assume initially \(x >= 0 \)
```
// x >= 0
z = 0;
// x >= 0 \land z == 0
if(x != 0) {
  // x >= 0 \land z == 0 \land x != 0 (so x > 0)
  z = x;
  // ... \land z > 0
} else {
  // x >= 0 \land z == 0 \land !x==0 (so x == 0)
  z = x + 1;
  // ... \land z == 1
} // ( ... \land z > 0) \lor (... \land z == 1) (so z > 0)
```
Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – [Named after its inventor, Tony Hoare]
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops

Some notation and terminology

• The “assumption” before some code is the precondition
• The “what holds after (given assumption)” is the postcondition

• Instead of writing pre/postconditions after //, write them in {...}
 – This is not Java
 – How Hoare logic has been written “on paper” for 40ish years
 { w < -59 }
 x = 17;
 { w + x < -42 }
 – In pre/postconditions, = is equality, not assignment
 • Math’s “=”, which for numbers is Java’s ==
 { w > 0 ∧ x = 17 }
 y = 42;
 { w > 0 ∧ x = 17 ∧ y = 42 }

What an assertion means

• An assertion (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)
• A program state is something that “given” a variable can “tell you” its contents
 – Or any expression that has no side-effects

• An assertion holds for a program state, if evaluating using the program state produces true
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the set of (exactly the) states for which it holds

A Hoare Triple

• A Hoare triple is two assertions and one piece of code:
 { P } S { Q }
 – P the precondition
 – S the code (statement)
 – Q the postcondition

• A Hoare triple { P } S { Q } is (by definition) valid if:
 – For all states for which P holds, executing S always produces a state for which Q holds
 – Less formally: If P is true before S, then Q must be true after
 – Else the Hoare triple is invalid

Examples

Valid or invalid?
 – (Assume all variables are integers without overflow)

 • \{ x != 0 \} \ y = x*x; \{ \ y > 0 \}
 • \{ z != 1 \} \ y = z*z; \{ \ y != z \}
 • \{ x >= 0 \} \ y = 2*x; \{ \ y > x \}
 • \{ true \} \{ if(x > 7) \{ y=4; \} else \{ y=3; \} \} \{ y < 5 \}
 • \{ true \} \{ x = y; z = x; \} \{ y=z \}
 • \{ x=7 ∧ y=5 \}
 \{ tmp=x; x=tmp; y=x; \}
 \{ y=7 ∧ x=5 \}
Aside: assert in Java

• An assertion in Java is a statement with a Java expression, e.g.,
  ```java
  assert x > 0 && y < x;
  ```
• Similar to our assertions
 – Evaluate using a program state to get true or false
 – Uses Java syntax
• In Java, this is a run-time thing: Run the code and raise an exception if assertion is violated
 – Unless assertion-checking is disabled
 – Later course topic
• This week: we are reasoning about the code, not running it on some input

The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs
• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture:] A rule for loops
 – …

Assignment statements

```latex
\{P\} \ x = e; \ \{Q\}
```

• Let \(Q'\) be like \(Q\) except replace every \(x\) with \(e\)
• Triple is valid if:
 For all program states, if \(P\) holds, then \(Q'\) holds
 – That is, \(P\) implies \(Q'\), written \(P \Rightarrow Q'\)
• Example:
  ```latex
  \{z > 34\} y=z+1; \ \{y > 1\}
  ```
 \(Q'\) is \(\{z+1 > 1\}\)

Sequences

```latex
\{P\} \ S1;S2 \ \{Q\}
```

• Triple is valid if and only if there is an assertion \(R\) such that
 – \(\{P\}S1(R)\) is valid, and
 – \(R)S2(Q)\) is valid
 – \(Q_1 \vartriangleleft Q_2\) implies \(Q\)
• Example:
  ```latex
  \{z >= 1\} y=z+1; w=y*y; \ \{w > y\} \ (integers)
  ```
 – Let \(Q_1\) be \(\{y > 1\}\)
 – Show \(\{z >= 1\} y=z+1; \ \{y > 1\}\)
 • Use rule for assignments: \(z >= 1\) implies \(z+1 > 1\)
 – Show \(\{y > 1\} w=y*y; \ \{w > y\}\)
 • Use rule for assignments: \(y > 1\) implies \(y*y > y\)

Conditionals

```latex
\{P\} if(b) S1 else S2 \ \{Q\}
```

• Triple is valid if and only if there are assertions \(Q1,Q2\) such that
 – \(\{P \land b\}S1(Q1)\) is valid, and
 – \(\{P \land \neg b\}S2(Q2)\) is valid, and
 – \(Q1 \lor Q2\) implies \(Q\)
• Example:
  ```latex
  \{true\} if(x > 7) y=x; else y=20; \ \{y > 5\}
  ```
 – Let \(Q1\) be \(\{y > 7\}\) (other choices work too)
 – Let \(Q2\) be \(\{y = 20\}\) (other choices work too)
 – Use assignment rule to show \(true \land x > 7\}y=x;\{y>7\)
 – Use assignment rule to show \(true \land x <= 7\}y=20;\{y=20\)
 – Indicate \(y>7 \lor y=20\) implies \(y>5\)

Our approach

• Hoare Logic, a 1970s approach to logical reasoning about code
 – Considering just variables, assignments, if-statements, while-loops
 • So no objects or methods
 • This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition
 • Next lecture: Loops
Weaker vs. Stronger

If \(P_1 \) implies \(P_2 \) (written \(P_1 \Rightarrow P_2 \)), then:
- \(P_1 \) is stronger than \(P_2 \)
- \(P_2 \) is weaker than \(P_1 \)

- Whenever \(P_1 \) holds, \(P_2 \) also holds
- So it is more (or at least as) “difficult” to satisfy \(P_1 \)
 - The program states where \(P_1 \) holds are a subset of the program states where \(P_2 \) holds
- So \(P_1 \) puts more constraints on program states
- So it’s a stronger set of obligations/requirements

Examples

- \(x = 17 \) is stronger than \(x > 0 \)
- \(x \) is prime is neither stronger nor weaker than \(x \) is odd
- \(x \) is prime and \(x > 2 \) is stronger than \(x \) is odd and \(x > 2 \)

Why this matters to us

- Suppose:
 - \(\{P\}S\{Q\} \), and
 - \(P \) is weaker than some \(P_1 \), and
 - \(Q \) is stronger than some \(Q_1 \)

 Then: \(\{P_1\}S\{Q\} \) and \(\{P\}S\{Q_1\} \)

 Example:
 - \(P \) is \(x >= 0 \)
 - \(P_1 \) is \(x > 0 \)
 - \(S \) is \(y = x+1 \)
 - \(Q \) is \(y > 0 \)
 - \(Q_1 \) is \(y >= 0 \)

So...

- For backward reasoning, if we want \(\{P\}S\{Q\} \), we could instead:
 - Show \(\{P_1\}S\{Q\} \), and
 - Show \(P \Rightarrow P_1 \)

 Better, we could just show \(\{P_2\}S\{Q\} \) where \(P_2 \) is the weakest precondition of \(Q \) for \(S \)
 - Weakest means the most lenient assumptions such that \(Q \) will hold
 - Any precondition \(P \) such that \(\{P\}S\{Q\} \) is valid will be stronger than \(P_2 \), i.e., \(P \Rightarrow P_2 \)

 Amazing (?): Without loops/methods, for any \(S \) and \(Q \), there exists a unique weakest precondition, written \(wp(S, Q) \)
 - Like our general rules with backward reasoning

Weakest preconditions

- \(wp(x = e; Q) \) is \(Q \) with each \(x \) replaced by \(e \)
 - Example: \(wp(x = y*y; x > 4) = y*y > 4 \), i.e., \(|y| > 2 \)

- \(wp(S_1;S_2, Q) \) is \(wp(S_1, wp(S_2, Q)) \)
 - i.e., let \(R \) be \(wp(S_2, Q) \) and overall \(wp \) is \(wp(S_1, R) \)
 - Example: \(wp((y=x+1; z=y+1;), z > 2) = (x + 1)+1 > 2, i.e., x > 0 \)

- \(wp(if \ b \ S_1 \ else \ S_2, Q) \) is this logic formula:
 \[wp(\{b \land wp(S_1, Q)\} \lor \{\neg b \land wp(S_2, Q)\}) \]
 (In any state, \(b \) will evaluate to either true or false…)
 (You can sometimes then simplify the result)

Simple examples

- If \(S \) is \(x = y*y \) and \(Q \) is \(x > 4 \), then \(wp(S, Q) \) is \(y*y > 4 \), i.e., \(|y| > 2 \)

- If \(S \) is \(y = x + 1; z = y - 3; \) and \(Q \) is \(z = 10 \), then \(wp(S, Q) \) ...
 - \(wp(y = x + 1; z = y - 3; z = 10) \)
 - \(wp(y = x + 1; wp(z = y - 3; z = 10)) \)
 - \(wp(y = x + 1; y-3 = 10) \)
 - \(wp(y = x + 1; y = 13) \)
 - \(x+1 = 13 \)
 - \(x = 12 \)
Bigger example

S is if (x < 5) {
 x = x*x;
} else {
 x = x+1;
}

Q is x >= 9

wp(S, x >= 9) =
(x < 5 \land wp(x = x*x; x >= 9))
\lor
(x >= 5 \land wp(x = x+1; x >= 9))

If-statements review

Forward reasoning

\{P\}
if B
\{\{P \land B\} \lor \{B \land wp(S1, Q)\}\}
else
\{wp(S1, Q)\}
\{Q\}

Backward reasoning

\{ (B \land wp(S1, Q)) \lor (B \land wp(S2, Q)) \}
if B
\{wp(S1, Q)\}
\{Q\}
else
\{wp(S2, Q)\}
\{Q\}

“Correct”

• If wp(S,Q) is true, then executing S will always produce a state where Q holds
 – true holds for every program state

One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:
 \{true\}
 w=x+y;
 \{w = x + y;\}
 x=4;
 \{w = x + y \land x = 4\}
 y=3;
 \{w = x + y \land x = 4 \land y = 3\}
 But clearly we do not know w=7!

The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the “old contents”

• Corrected example:
 \{true\}
 w=x+y;
 \{w = x + y;\}
 x=4;
 \{w = x1 + y \land x = 4\}
 y=3;
 \{w = x1 + y1 \land x = 4 \land y = 3\}

Useful example

• Swap contents
 – Give a name to initial contents so we can refer to them in the post-condition
 – Just in the formulas: these “names” are not in the program
 – Use these extra variables to avoid “forgetting” “connections”

 \{x = x_pre \land y = y_pre\}
 tmp = x;
 \{x = x_pre \land y = y_pre \land tmp=x\}
 x = y;
 \{x = y \land y = y_pre \land tmp=x_pre\}
 y = tmp;
 \{x = y_pre \land y = tmp \land tmp=x_pre\}