CSE 331
Software Design & Implementation

Dan Grossman
Spring 2015
Lecture 2 – Reasoning About Code With Logic
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins)
Announcements

• All sections have moved location:
 – Section AA 8:30-9:20 LOW206
 – Section AB 9:30-10:20 LOW206
 – Section AA 10:30-11:20 LOW202

• You should have received an email about talk-to-the-professor sign-ups

• Overloads to be decided by Friday: unfortunately many

• Next few lectures: read lecture notes posted on website in addition to flipping through slides
Reasoning about code

Determine what facts are true as a program executes
 – Under what assumptions

Examples:
 – If \(x \) starts positive, then \(y \) is 0 when the loop finishes
 – Contents of the array that \texttt{arr} refers to are sorted
 – Except at one code point, \(x + y = z \)
 – For all instances of \texttt{Node n},
 \[
 \texttt{n.next == null} \lor \texttt{n.next.prev == n}
 \]
 – …
Why do this?

• Essential complement to testing, which we will also study
 – Testing: Actual results for some actual inputs
 – Logical reasoning: Reason about whole classes of inputs/states at once (“If $x > 0$, …”)
 • Prove a program correct (or find bugs trying)
 • Understand why code is correct

• Stating assumptions is the essence of specification
 – “Callers must not pass null as an argument”
 – “Callee will always return an unaliased object”
 – …
Our approach

• Hoare Logic: a 1970s approach to logical reasoning about code
 – For now, consider just variables, assignments, if-statements, while-loops
 • So no objects or methods

• This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

• Next lecture: Loops
Why?

• Programmers rarely “use Hoare logic” in this much detail
 – For simple snippets of code, it’s overkill
 – Gets very complicated with objects and aliasing
 – But occasionally useful for loops and data with subtle *invariants*
 • Examples: Homework 0, Homework 2

• Also it’s an ideal setting for the right logical foundations
 – How can logic “talk about” program states?
 – How does code execution “change what is true”?
 – What do “weaker” and “stronger” mean?

This is all essential for *specifying library-interfaces*, which *does* happen All the Time in The Real World® (coming lectures)
Example

Forward reasoning:

– Suppose we initially know (or assume) \(w > 0 \)

 // \(w > 0 \)

 \(x = 17; \)

 // \(w > 0 \) \(\land \) \(x == 17 \)

 \(y = 42; \)

 // \(w > 0 \) \(\land \) \(x == 17 \) \(\land \) \(y == 42 \)

 \(z = w + x + y; \)

 // \(w > 0 \) \(\land \) \(x == 17 \) \(\land \) \(y == 42 \) \(\land \) \(z > 59 \)

 ...

– Then we know various things after, including \(z > 59 \)
Example

Backward reasoning:

- Suppose we want z to be negative at the end

```plaintext
// w + 17 + 42 < 0
x = 17;
// w + x + 42 < 0
y = 42;
// w + x + y < 0
z = w + x + y;
// z < 0
```

- Then we know initially we need to know/assume $w < -59$
 - Necessary and sufficient
Forward vs. Backward, Part 1

- **Forward reasoning:**
 - Determine what follows from initial assumptions
 - Most useful for *maintaining an invariant*

- **Backward reasoning**
 - Determine sufficient conditions for a certain result
 - If result desired, the assumptions suffice for correctness
 - If result undesired, the assumptions suffice to trigger bug
Forward vs. Backward, Part 2

• Forward reasoning:
 – Simulates the code (for many “inputs” “at once”)
 – Often more intuitive
 – But introduces [many] facts irrelevant to a goal

• Backward reasoning
 – Often more useful: Understand what each part of the code contributes toward the goal
 – “Thinking backwards” takes practice but gives you a powerful new way to reason about programs
Conditionals

// initial assumptions
if(...) {
 ... // also know test evaluated to true
} else {
 ... // also know test evaluated to false
}
// either branch could have executed

Two key ideas:

1. The precondition for each branch includes information about the result of the test-expression
2. The overall postcondition is the disjunction (“or”) of the postcondition of the branches
Example (Forward)

Assume initially \(x \geq 0 \)

\[
\begin{align*}
// & \ x \geq 0 \\
z &= 0; \\
// & \ x \geq 0 \land z == 0 \\
\text{if}(x \neq 0) \{ \\
// & \ x \geq 0 \land z == 0 \land x \neq 0 \text{ (so } x > 0) \\
z &= x; \\
// & \ ... \land z > 0 \\
\} \text{ else } \{ \\
// & \ x \geq 0 \land z == 0 \land !(x\neq 0) \text{ (so } x == 0) \\
z &= x + 1; \\
// & \ ... \land z == 1 \\
\}
\end{align*}
\]

// (... \land z > 0) \lor (... \land z == 1) \text{ (so } z > 0)
Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - [Named after its inventor, Tony Hoare]
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops
Some notation and terminology

• The “assumption” before some code is the **precondition**
• The “what holds after (given assumption)” is the **postcondition**

• Instead of writing pre/postconditions after //, write them in {...}
 – This is not Java
 – How Hoare logic has been written “on paper” for 40ish years

{ \(w < -59 \) }
\(x = 17; \)
{ \(w + x < -42 \) }

– In pre/postconditions, = is equality, not assignment
• Math’s “=” , which for numbers is Java’s ==

{ \(w > 0 \land x = 17 \) }
\(y = 42; \)
{ \(w > 0 \land x = 17 \land y = 42 \) }
What an assertion means

• An **assertion** (pre/postcondition) is a logical formula that can refer to program state (e.g., contents of variables)

• A **program state** is something that “given” a variable can “tell you” its contents
 – Or any expression that has no *side-effects*

• An assertion **holds** for a program state, if evaluating using the program state produces *true*
 – Evaluating a program variable produces its contents in the state
 – Can think of an assertion as representing the set of (exactly the) states for which it holds
A Hoare Triple

• A Hoare triple is two assertions and one piece of code:

\[\{ P \} \quad S \quad \{ Q \} \]

– \(P \) the precondition
– \(S \) the code (statement)
– \(Q \) the postcondition

• A Hoare triple \(\{ P \} \quad S \quad \{ Q \} \) is (by definition) valid if:

– For all states for which \(P \) holds, executing \(S \) always produces a state for which \(Q \) holds
– Less formally: If \(P \) is true before \(S \), then \(Q \) must be true after
– Else the Hoare triple is invalid
Examples

Valid or invalid?
 – (Assume all variables are integers without overflow)

• \(\{ x \neq 0 \} \ y = x*x; \ { y > 0 } \)
• \(\{ z \neq 1 \} \ y = z*z; \ { y \neq z } \)
• \(\{ x \geq 0 \} \ y = 2*x; \ { y > x } \)
• \(\{ \text{true} \} \ (i f(x > 7) \ { y=4; } \ \text{else} \ { y=3; }) \ { y < 5 } \)
• \(\{ \text{true} \} \ (x = y; \ z = x;) \ { y=z } \)
• \(\{ x=7 \land y=5 \} \)
 \((t m p=x; \ x=t m p; \ y=x;) \)
\(\{ y=7 \land x=5 \} \)
Examples

Valid or invalid?

- (Assume all variables are integers without overflow)

- \{x \neq 0\} \ y = x \times x; \ {y > 0} \quad \text{valid}
- \{z \neq 1\} \ y = z \times z; \ {y \neq z} \quad \text{invalid}
- \{x \geq 0\} \ y = 2 \times x; \ {y > x} \quad \text{invalid}
- \{\text{true}\} \ (\text{if}(x > 7) \ {y=4;} \ \text{else} \ {y=3;}) \ \{y < 5\} \quad \text{valid}
- \{\text{true}\} \ (x = y; \ z = x;) \ \{y=z\} \quad \text{valid}
- \{x=7 \land y=5\} \quad \text{invalid}
 \ (\text{tmp}=x; \ x=\text{tmp}; \ y=x;)
\{y=7 \land x=5\}
Aside: assert in Java

- An assertion in Java is a statement with a Java expression, e.g.,
 \[
 \text{assert } x > 0 \land y < x; \]
- Similar to our assertions
 - Evaluate using a program state to get \textbf{true} or \textbf{false}
 - Uses Java syntax
- In Java, this is a \textit{run-time thing}: Run the code and raise an exception if assertion is violated
 - Unless assertion-checking is disabled
 - Later course topic
- This week: we are reasoning about the code, not running it on some input
The general rules

• So far: Decided if a Hoare triple was valid by using our understanding of programming constructs

• Now: For each kind of construct there is a general rule
 – A rule for assignment statements
 – A rule for two statements in sequence
 – A rule for conditionals
 – [next lecture:] A rule for loops
 – ...
Assignment statements

\{ P \} \ x = e; \ \{ Q \}

• Let Q’ be like Q except replace every x with e
• Triple is valid if:
 For all program states, if P holds, then Q’ holds
 – That is, P implies Q’, written P => Q’

• Example: \{ z > 34 \} \ y = z + 1; \ \{ y > 1 \}
 – Q’ is \{ z+1 > 1 \}
Sequences

\{P\} S1;S2 \{Q\}

- Triple is valid if and only if there is an assertion \(R\) such that
 - \(\{P\}S1\{R\}\) is valid, and
 - \(\{R\}S2\{Q\}\) is valid

- Example: \(\{z \geq 1\} y=z+1; w=y*y; \{w > y\}\) (integers)
 - Let \(R\) be \(\{y > 1\}\)
 - Show \(\{z \geq 1\} y=z+1; \{y > 1\}\)
 - Use rule for assignments: \(z \geq 1\) implies \(z+1 > 1\)
 - Show \(\{y > 1\} w=y*y; \{w > y\}\)
 - Use rule for assignments: \(y > 1\) implies \(y*y > y\)
Conditionals

\{P\} if(b) S1 else S2 \{Q\}

• Triple is valid if and only if there are assertions \(Q_1, Q_2\) such that
 – \(\{P \land b\} S1 \{Q_1\}\) is valid, and
 – \(\{P \land \neg b\} S2 \{Q_2\}\) is valid, and
 – \(Q_1 \lor Q_2\) implies \(Q\)

• Example: \{true\} (if(x > 7) y=x; else y=20;) \{y > 5\}
 – Let \(Q_1\) be \{y > 7\} (other choices work too)
 – Let \(Q_2\) be \{y = 20\} (other choices work too)
 – Use assignment rule to show \{true \land x > 7\} y=x;\{y>7\}
 – Use assignment rule to show \{true \land x \leq 7\} y=20;\{y=20\}
 – Indicate \(y>7 \lor y=20\) implies \(y>5\)
Our approach

- Hoare Logic, a 1970s approach to logical reasoning about code
 - Considering just variables, assignments, if-statements, while-loops
 - So no objects or methods

- This lecture: The idea, without loops, in 3 passes
 1. High-level intuition of forward and backward reasoning
 2. Precise definition of logical assertions, preconditions, etc.
 3. Definition of weaker/stronger and weakest-precondition

- Next lecture: Loops
Weaker vs. Stronger

If P_1 implies P_2 (written $P_1 \implies P_2$), then:

- P_1 is stronger than P_2
- P_2 is weaker than P_1

- Whenever P_1 holds, P_2 also holds
- So it is more (or at least as) “difficult” to satisfy P_1
 - The program states where P_1 holds are a subset of the program states where P_2 holds
- So P_1 puts more constraints on program states
- So it’s a stronger set of obligations/requirements
Examples

• $x = 17$ is stronger than $x > 0$

• x is prime is neither stronger nor weaker than x is odd

• x is prime and $x > 2$ is stronger than x is odd and $x > 2$

• ...
Why this matters to us

• Suppose:
 – \(\{P\}S\{Q\}\), and
 – \(P\) is weaker than some \(P_1\), and
 – \(Q\) is stronger than some \(Q_1\)

• Then: \(\{P_1\}S\{Q\}\) and \(\{P\}S\{Q_1\}\) and \(\{P_1\}S\{Q_1\}\)

• Example:
 – \(P\) is \(x \geq 0\)
 – \(P_1\) is \(x > 0\)
 – \(S\) is \(y = x+1\)
 – \(Q\) is \(y > 0\)
 – \(Q_1\) is \(y \geq 0\)
So...

• For backward reasoning, if we want \(\{P\} S \{Q\} \), we could instead:
 – Show \(\{P_1\} S \{Q\} \), and
 – Show \(P \Rightarrow P_1 \)

• Better, we could just show \(\{P_2\} S \{Q\} \) where \(P_2 \) is the weakest precondition of \(Q \) for \(S \)
 – Weakest means the most lenient assumptions such that \(Q \) will hold
 – Any precondition \(P \) such that \(\{P\} S \{Q\} \) is valid will be stronger than \(P_2 \), i.e., \(P \Rightarrow P_2 \)

• Amazing (?): Without loops/methods, for any \(S \) and \(Q \), there exists a unique weakest precondition, written \(\text{wp}(S,Q) \)
 – Like our general rules with backward reasoning
Weakest preconditions

• \(\text{wp}(x = e; Q)\) is \(Q\) with each \(x\) replaced by \(e\)

 – Example: \(\text{wp}(x = y*y; x > 4) = y*y > 4\), i.e., \(|y| > 2\)

• \(\text{wp}(S1; S2, Q)\) is \(\text{wp}(S1, \text{wp}(S2, Q))\)

 – I.e., let \(R\) be \(\text{wp}(S2, Q)\) and overall \(\text{wp}\) is \(\text{wp}(S1, R)\)

 – Example: \(\text{wp}((y=x+1; z=y+1); z > 2) = (x + 1) + 1 > 2\), i.e., \(x > 0\)

• \(\text{wp}(\text{if } b \text{ S1 else S2}, Q)\) is this logic formula:

 \[(b \land \text{wp}(S1,Q)) \lor (!b \land \text{wp}(S2,Q))\]

 – (In any state, \(b\) will evaluate to either true or false…)

 – (You can sometimes then simplify the result)
Simple examples

- If S is $x = y \times y$ and Q is $x > 4$, then $wp(S,Q)$ is $y \times y > 4$, i.e., $|y| > 2$

- If S is $y = x + 1; \ z = y - 3; \ $ and Q is $z = 10$, then $wp(S,Q)$...

 \[wp(y = x + 1; \ z = y - 3; \ z = 10) \]

 \[wp(y = x + 1; , \ wp(z = y - 3; , z = 10)) \]

 \[wp(y = x + 1; , y - 3 = 10) \]

 \[wp(y = x + 1; , y = 13) \]

 \[x + 1 = 13 \]

 \[x = 12 \]
Bigger example

\[
S \text{ is if } (x < 5) \begin{cases}
 x = x \times x; \\
 \text{else } \begin{cases}
 x = x + 1;
 \end{cases}
\end{cases}
\]

Q is \(x \geq 9 \)

\[
\wp(S, x \geq 9) = (x < 5 \land \wp(x = x \times x; , x \geq 9)) \\
\quad \lor (x \geq 5 \land \wp(x = x + 1; , x \geq 9))
\]

\[
= (x < 5 \land x \times x \geq 9) \\
\quad \lor (x \geq 5 \land x + 1 \geq 9)
\]

\[
= (x \leq -3) \lor (x \geq 3 \land x < 5) \\
\quad \lor (x \geq 8)
\]
If-statements review

Forward reasoning

\{P\}
if B
\{P \land B\}
S1
\{Q1\}
else
\{P \land \neg B\}
S2
\{Q2\}
\{Q1 \lor Q2\}

Backward reasoning

\{ (B \land wp(S1, Q)) \lor (\neg B \land wp(S2, Q)) \}
if B
\{wp(S1, Q)\}
S1
\{Q\}
else
\{wp(S2, Q)\}
S2
\{Q\}
\{Q\}
“Correct”

- If $wp(S, Q)$ is true, then executing S will always produce a state where Q holds
 - true holds for every program state
One more issue

• With forward reasoning, there is a problem with assignment:
 – Changing a variable can affect other assumptions

• Example:

  ```
  {true}
  w=x+y;
  {w = x + y;}
  x=4;
  {w = x + y ∧ x = 4}
  y=3;
  {w = x + y ∧ x = 4 ∧ y = 3}
  ```

 But clearly we do not know w=7!
The fix

• When you assign to a variable, you need to replace all other uses of the variable in the post-condition with a different variable
 – So you refer to the “old contents”

• Corrected example:

  ```
  {true}
  w=x+y;
  {w = x + y;}
  x=4;
  {w = x1 + y ∧ x = 4}
  y=3;
  {w = x1 + y1 ∧ x = 4 ∧ y = 3}
  ```
Useful example

- Swap contents
 - Give a name to initial contents so we can refer to them in the post-condition
 - Just in the formulas: these “names” are not in the program
 - Use these extra variables to avoid “forgetting” “connections”

\[
\begin{align*}
\{ x &= x_pre \land y = y_pre \} \\
tmp &= x; \\
\{ x &= x_pre \land y = y_pre \land tmp=x \} \\
x &= y; \\
\{ x &= y \land y = y_pre \land tmp=x_pre \} \\
y &= tmp; \\
\{ x &= y_pre \land y = tmp \land tmp=x_pre \}
\end{align*}
\]