
CSE 331

Software Design & Implementation

Dan Grossman

Spring 2015

GUI Event-Driven Programming
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins)

The plan

• User events and callbacks

– Event objects

– Event listeners

– Registering listeners to handle events

• Anonymous inner classes

• Proper interaction between UI and program threads

2 CSE331 Spring 2015

Event-driven programming

Many applications are event-driven GUI programs:

– Program initializes itself on startup then enters an

event loop

– Abstractly:

do {

 e = getNextEvent();

 process event e;

} while (e != quit);

Contrast with application- or algorithm-driven control where

program expects input data in a particular order

– Typical of large non-GUI applications like web crawling,

payroll, data simulation, …

3 CSE331 Spring 2015

Kinds of GUI events

Typical events handled by a GUI program:

– Mouse move/drag/click, button press, button release

– Keyboard: key press or release, sometimes with modifiers

like shift/control/alt/etc.

– Finger tap or drag on a touchscreen

– Joystick, drawing tablet, other device inputs

– Window resize/minimize/restore/close

– Network activity or file I/O (start, done, error)

– Timer interrupt (including animations)

4 CSE331 Spring 2015

Events in Java AWT/Swing

Many (most?) of the GUI widgets can generate events (button

clicks, menu picks, key press, etc.)

Handled using the Observer Pattern:

– Objects wishing to handle events register as observers with

the objects that generates them

– When an event happens, appropriate method in each

observer is called

– As expected, multiple observers can watch for and be

notified of an event generated by an object

5 CSE331 Spring 2015

Event objects

A Java GUI event is represented by an event object

– Superclass is AWTEvent

– Some subclasses:

 ActionEvent – GUI-button press

 KeyEvent – keyboard

 MouseEvent – mouse move/drag/click/button

Event objects contain information about the event

– UI object that triggered the event

– Other information depending on event. Examples:

ActionEvent – text string from a button

MouseEvent – mouse coordinates

6 CSE331 Spring 2015

Event listeners

Event listeners must implement the proper interface:
KeyListener, ActionListener, MouseListener (buttons),

MouseMotionListener (move/drag), …

– Or extend the appropriate library abstract class that provides

empty implementations of the interface methods

When an event occurs, the appropriate method specified in the
interface is called: actionPerformed, keyPressed,

mouseClicked, mouseDragged, …

An event object is passed as a parameter to the event listener

method

7 CSE331 Spring 2015

Example: button

Create a JButton and add it to a window

Create an object that implements ActionListener

– (containing an actionPerformed method)

Add the listener object to the button’s listeners

ButtonDemo1.java

8 CSE331 Spring 2015

Which button is which?

Q: A single button listener object often handles several buttons.

How to tell which button generated the event?

A: an ActionEvent has a getActionCommand method that

returns (for a button) the “action command” string

– Default is the button name (text), but usually better to set it to

some string that will remain the same inside the program

code even if the UI is changed or translated. See button

example.

Similar mechanisms to decode other events

9 CSE331 Spring 2015

Listener classes

ButtonDemo1.java defines a class that is used only once to

create a listener for a single button

– Could have been a top-level class, but in this example it was

an inner class since it wasn’t needed elsewhere

– But why a full-scale class when all we want is to create a

method to be called after a button click?

• Alas, no lambdas (function closures) before Java 8

A more convenient shortcut: anonymous inner classes

10 CSE331 Spring 2015

Anonymous inner classes

Idea: define a new class directly in the new expression that creates

an object of the (new) anonymous inner class

– Specify the superclass to be extended or interface to be

implemented

– Override or implement methods needed in the anonymous

class instance

– Can have methods, fields, etc., but not constructors

– But if it starts to get complex, use an ordinary class for clarity

(nested inner class if appropriate)

Warning: ghastly syntax ahead

11 CSE331 Spring 2015

Example

button.addActionListener(new ActionListener(){

 public void actionPerformed(ActionEvent e) {

 model.doSomething()

 }

 }

);

12

new expression to

create class instance

Brackets surrounding

new class definition

Implementation of method

for this anonymous class

Method call

parameter list

Class or interface being

extended/implemented

 (can include constructor

 parameters)

CSE331 Spring 2015

Example

ButtonDemo2.java

13 CSE331 Spring 2015

Program thread and UI thread

Recall that the program and user interface are running in separate,

concurrent threads

All UI actions happen in the UI thread – including the callbacks like
actionListener or paintComponent, etc. defined in your

code

After event handling and related work, call repaint() if

paintComponent() needs to run. Don’t try to draw anything

from inside the event handler itself (as in you must not do this!!!)

Remember that paintComponent must be able to do its job by

reading data that is available whenever the window manager

calls it

14 CSE331 Spring 2015

Event handling and repainting

15

program window manager (UI)

repaint()

paintComponent(g)

Remember: your program
and the window manager
are running concurrently:

• Program thread
• User Interface thread

It’s ok to call repaint
from an event handler,
but never call
paintComponent
yourself from either
thread.

actionPerformed(e)

CSE331 Spring 2015

Working in the UI thread

Event handlers should not do a lot of work

– If the event handler does a lot of computing, the user

interface will appear to freeze up

• (Why?)

– If there’s lots to do, the event handler should set a bit that

the program thread will notice: Do the heavy work back in

the program thread.

• (Don’t worry – finding a path for campus maps should be

fast enough to do in the UI thread)

16 CSE331 Spring 2015

Synchronization issues?

Yes, there can be synchronization problems

– (cf. CSE332, CSE451, …)

Not usually an issue in well-behaved programs, but can happen

Some advice:

– Keep event handling short

– Call repaint when data is ready, not when partially
updated

– Don’t update data in the UI and program threads at the same
time (particularly for complex data)

– Never call paintComponent directly

• (Have we mentioned you should never call
paintComponent? And don’t create a new Graphics
object either.)

17 CSE331 Spring 2015

Larger example – bouncing balls

A hand-crafted MVC application. Origin is somewhere back in the

CSE142/3 mists. Illustrates how some swing GUI components can

be put to use.

Disclaimers:

– Not the very best design

– Unlikely to be directly appropriate for your project

– Use it for ideas and inspiration, and feel free to steal small

bits if they really fit

Enjoy!

18 CSE331 Spring 2015

